
The concept of force, as we have
seen, defines a culture. In the pre-

vious columns of this series (PHYSICS
TODAY, October 2004, page 11, and
December 2004, page 10) I’ve indi-
cated how F ⊂ ma acquires meaning
through interpretation of—that is, ad-
ditional assumptions about—F. This
body of interpretation is a sort of folk-
lore. It contains both approximations
that we can derive, under appropriate
conditions, from modern foundations,
and also rough generalizations (such
as “laws” of friction and of elastic be-
havior) abstracted from experience.

In the course of that discussion it
became clear that there is also a
smaller, but nontrivial, culture
around m. Indeed, the conservation of
m for ordinary matter provides an ex-
cellent, instructive example of an
emergent law. It captures in a simple
statement an important consequence
of broad regularities whose basis in
modern fundamentals is robust but
complicated. In modern physics, the
idea that mass is conserved is drasti-
cally false. A great triumph of modern
quantum chromodynamics (QCD) is
to build protons and neutrons, which
contribute more than 99% of the mass
of ordinary matter, from gluons that
have exactly zero mass, and from u
and d quarks that have very small
masses. To explain from a modern
perspective why conservation of mass
is often a valid approximation, we
need to invoke specific, deep proper-
ties of QCD and quantum electrody-
namics (QED), including the dynami-
cal emergence of large energy gaps in
QCD and the smallness of the fine
structure constant in QED.

Isaac Newton and Antoine
Lavoisier knew nothing of all this, of
course. They took conservation of mass
as a fundamental principle. And they

were right to do so, because by adopt-
ing that principle they were able to
make brilliant progress in the analysis
of motion and of chemical change. De-
spite its radical falsity, their principle
was, and still is, an adequate basis for
many quantitative applications. To dis-
card it is unthinkable. It is an invalu-
able cultural artifact and a basic in-
sight into the way the world works
despite—indeed, in part, because of—
its emergent character.

The culture of a
What about a? There’s a culture at-
tached to acceleration, as well. To ob-
tain a, we are instructed to consider
the change of the position of a body in
space as a function of time, and to
take the second derivative. This pre-
scription, from a modern perspective,
has severe problems.

In quantum mechanics, bodies don’t
have definite positions. In quantum
field theory, they pop in and out of ex-
istence. In quantum gravity, space is
fluctuating and time is hard to define.
So evidently serious assumptions and
approximations are involved even in
making sense of a’s definition.

Nevertheless, we know very well
where we’re going to end up. We’re
going to have an emergent, approxi-
mate concept of what a body is. Phys-
ical space is going to be modeled
mathematically as the Euclidean
three-dimensional space R3 that sup-
ports Euclidean geometry. This
tremendously successful model of
space has been in continuous use for
millennia, with applications in sur-
veying and civil engineering that even
predate Euclid’s formalization. 

Time is going to be modeled as the
one-dimensional continuum R1 of real
numbers. This model of time, at a topo-
logical level, goes into our primitive in-
tuitions that divide the world into past
and future. I believe that the metric
structure of time—that is, the idea
that time can be not only ordered but
divided into intervals with definite nu-
merical magnitude—is a much more

recent innovation. That idea emerged
clearly only with Galileo’s use of pen-
dulum clocks (and his pulse!).

The mathematical structures in-
volved are so familiar and fully devel-
oped that they can be, and are, used
routinely in computer programs. This
is not to say they are trivial. They
most definitely aren’t. The classical
Greeks agonized over the concept of a
continuum. Zeno’s famous paradoxes
reflect these struggles. Indeed, Greek
mathematics never won through to
comfortable algebraic treatment of
real numbers. Continuum quantities
were always represented as geometric
intervals, even though that represen-
tation involved rather awkward con-
structions to implement simple alge-
braic operations.

The founders of modern analysis
(René Descartes, Newton, Gottfried
Wilhelm Leibniz, Leonhard Euler,
and others) were on the whole much
more freewheeling, trusting their in-
tuition while manipulating infinitesi-
mals that lacked any rigorous defini-
tion. (In his Principia, Newton did
operate geometrically, in the style of
the Greeks. That is what makes the
Principia so difficult for us to read
today. The Principia also contains a
sophisticated discussion of deriva-
tives as limits. From that discussion I
infer that Newton and possibly other
early analysts had a pretty good idea
about what it would take to make at
least the simpler parts of their work
rigorous, but they didn’t want to slow
down to do it.) Reasonable rigor, at 
the level commonly taught in mathe-
matics courses today—the much-
bemoaned epsilons and deltas—
entered into the subject in the 19th
century.

“Unreasonable” rigor entered in the
early 20th century, when the funda-
mental notions from which real num-
bers and geometry are constructed
were traced to the level of set theory
and ultimately symbolic logic. In their
Principia Mathematica Bertrand Rus-
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sell and Alfred Whitehead develop
375 pages of dense mathematics be-
fore proving 1 ⊕ 1 ⊂ 2. To be fair, their
treatment could be slimmed down con-
siderably if attaining that particular
result were the ultimate goal. But in
any case, an adequate definition of
real numbers from symbolic logic in-
volves some hard, complicated work.
Having the integers in hand, you then
have to define rational numbers and
their ordering. Then you must com-
plete them by filling in the holes so
that any bounded increasing sequence
has a limit. Then finally—this is the
hardest part—you must demonstrate
that the resulting system supports
algebra and is consistent.

Perhaps all that complexity is a
hint that the real-number model of
space and time is an emergent concept
that some day will be derived from
physically motivated primitives that
are logically simpler. Also, scrutiny of
the construction of real numbers sug-
gests natural variants, notably John
Conway’s surreal numbers, which in-
clude infinitesimals (smaller than any
rational number!) as legitimate quan-
tities.1 Might such quantities, whose
formal properties seem no less natu-
ral and elegant than those of ordinary
real numbers, help us to describe na-
ture? Time will tell.

Even the unreasonable rigor of
symbolic logic does not reach ideal
strictness. Kurt Gödel demonstrated
that this ideal is unattainable: No rea-
sonably complex, consistent ax-
iomatic system can be used to demon-
strate its own consistency. 

But all the esoteric shortcomings
in defining and justifying the culture
of a clearly arise on an entirely differ-
ent level from the comparatively mun-
dane, immediate difficulties we have
in doing justice to the culture of F. We
can translate the culture of a, without
serious loss, into C or FORTRAN.
That completeness and precision give
us an inspiring benchmark.

The computational imperative
Before they tried to do it, most com-
puter scientists anticipated that to
teach a computer to play chess like a
grand master would be much more
challenging than to teach one to do
mundane tasks like drive a car safely.
Notoriously, experience has proved
otherwise. A big reason for that sur-
prise is that chess is algorithmic,
whereas driving a car is not. In chess
the rules are completely explicit; we
know very concretely and unambigu-
ously what the degrees of freedom are
and how they behave. Car driving is
quite different: Essential concepts
like “other driver’s expectations” and

“pedestrian,” when you start to ana-
lyze them, quickly burgeon into cul-
tures. I wouldn’t trust a computer
driver in Boston’s streets because it
wouldn’t know how to interpret the
mixture of intimidation and deference
that human drivers convey by ges-
tures, maneuvers, and eye contact.

The problem with teaching a com-
puter classical mechanics is, of course,
of more than academic interest: We’d
like robots to get around and manip-
ulate things; computer gamesters
want realistic graphics; engineers and
astronomers would welcome smart
silicon collaborators—up to a point, I
suppose.

The great logician and philosopher
Rudolf Carnap made brave, pioneering
attempts to make axiomatic systems
for elementary mechanics, among
many other things.2 Patrick Hayes is-
sued an influential paper, “Naive
Physics Manifesto,” challenging artifi-
cial-intelligence researchers to codify
intuitions about materials and forces
in an explicit way.3 Physics-based com-
puter graphics is a lively, rapidly ad-
vancing endeavor, as are several vari-
eties of computer-assisted design. My
MIT colleagues Gerald Sussman and
Jack Wisdom have developed an in-
tensely computational approach to me-
chanics,4 supported every step of the
way with explicit programs. The time
may be ripe for a powerful synthesis,
incorporating empirical properties of
specific materials, successful known
designs of useful mechanisms, and
general laws of mechanical behavior
into a fully realized computational cul-
ture of F ⊂ ma. Functioning robots
might not need to know a lot of me-
chanics explicitly, any more than most
human soccer players do; but design-
ing a functioning robotic soccer player
may be a job that can best be accom-
plished by a very smart and knowl-
edgeable man-machine team.

Blur and focus
An overarching theme of this series
has been that the law F ⊂ ma, which
is sometimes presented as the epit-
ome of an algorithm describing na-
ture, is actually not an algorithm that
can be applied mechanically (pun in-
tended). It is more like a language in
which we can easily express impor-
tant facts about the world. That’s not
to imply it is without content. The
content is supplied, first of all, by
some powerful general statements in
that language—such as the zeroth
law, the momentum conservation
laws, the gravitational force law, the
necessary association of forces with
nearby sources—and then by the way
in which phenomenological observa-

tions, including many (though not all)
of the laws of material science can be
expressed in it easily. 

Another theme has been that
F ⊂ ma is not in any sense an ulti-
mate truth. We can understand, from
modern foundational physics, how it
arises as an approximation under
wide but limited circumstances.
Again, that does not prevent it from
being extraordinarily useful; indeed,
one of its primary virtues is to shield
us from the unnecessary complexity of
irrelevant accuracy!

Viewed this way, the law of physics
F ⊂ ma comes to appear a little softer
than is commonly considered. It really
does bear a family resemblance to
other kinds of laws, like the laws of ju-
risprudence or of morality, wherein
the meaning of the terms takes shape
through their use. In those domains,
claims of ultimate truth are wisely
viewed with great suspicion; yet
nonetheless we should actively aspire
to the highest achievable level of co-
herence and explicitness. Our physics
culture of force, properly understood,
has this profoundly modest but prac-
tically ambitious character. And once
it is no longer statuized, put on a
pedestal, and seen in splendid isola-
tion, it comes to appear as an inspir-
ing model for intellectual endeavor
more generally.
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