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Abstract

We discuss a recent provocative suggestion by Amelino-Camelia and others that classical spacetime may break down into
‘‘quantum foam’’ on distance scales many orders of magnitude larger than the Planck length, leading to effects which could
be detected using large gravitational wave interferometers. This suggestion is based on a quantum uncertainty limit obtained
by Wigner using a quantum clock in a gedanken timing experiment. Wigner’s limit, however, is based on two unrealistic and
unnecessary assumptions: that the clock is free to move, and that it does not interact with the environment. Removing either
of these assumptions makes the uncertainty limit invalid, and removes the basis for Amelino-Camelia’s suggestion. q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

w xAmelino-Camelia 1,2 has made the interesting
suggestion that the fundamental minimum distance
uncertainty between two spatially separated points
may depend on the separation distance and be many
orders of magnitude larger than the Planck length.
That is, the classical picture of spacetime may break
down to ‘‘quantum foam’’ on a surprisingly large

1 E-mail address: adler@relgyro.stanford.edu

scale. This would imply that quantum gravity effects
could potentially be probed with current or near-fu-
ture interferometers designed for use as gravita-
tional-wave detectors.

We consider here the arguments put forward by
w xAmelino-Camelia 1,2 , as well as related arguments

w xby Ng and van Dam 3,4 . These all rely on a lower
limit on distance measurement uncertainty obtained

w xlong ago by Wigner 5 , who used a quantum clock
in a gedanken light travel timing experiment. The
uncertainty limit is the result of spreading of the
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wave packet of the clock. There are two basic as-
sumptions in the analysis: the quantum clock is free,
and it does not interact with its environment during

Ž .the course of the macroscopic timing experiment.
That is, the clock evolves according to the unitary

Ž . Ž .operator U t,0 sexp yiHt with a strictly free
Hamiltonian; there is no interaction with a potential,
the environment, or anything else.

We show first that if the clock is quantum me-
Žchanical but not free if it is bound in a harmonic

.oscillator potential, for example then the uncertainty
limit becomes much smaller than that obtained by
Wigner and used by Amelino-Camelia and Ng and
van Dam. We then point out that, if the clock is
sufficiently large or complex, it will interact with its
environment in such a way that its wave function
decoheres; that is, loses the phase coherence neces-
sary for superposition into a packet. In addition, such

Ž .interactions e.g., a restraint system may localize or
‘‘collapse’’ the wave function. These effects gener-
ally happen in a time much less than that needed for
macroscopic distance measurements. The result is
that the clock wave function does not spread lin-
early over macroscopic times.

It thus appears that the clock used in the gedanken
experiments is particularly ill-suited to its purpose. It
does not appear to be ‘‘the best that we can imagine’’
w x5 . Indeed, due to decoherence, we expect that an
ideal quantum clock with nontrivial internal con-
struction is not obtainable, eÕen in principle.

Finally, we note that an additional gravitational
length uncertainty limit given by Ng and van Dam
w x Ž3,4 would violate everyday experience by many

.orders of magnitude if taken to be in any way
intrinsic to the measurement process.

2. Review of the quantum uncertainty limit

w xThe work of Amelino-Camelia 1,2 and of Ng
w xand van Dam 3,4 relies on an analysis of distance

w xmeasurement following Wigner 5 . The various au-
thors define the spatial distance between two points
as llsctr2, where t is the time it takes light to
complete a round trip between them, and c is of
course the velocity of light. At one of the points they
place a system of a clock plus a transmitter-receiver
that is used to send a light signal to a mirror at the

other point, and to time its return. To obtain a
quantum limit on the uncertainty in ll they assume
the clock system behaves as a free quantum object,
and calculate the uncertainty in its position during
the transit time of the light. This is a standard
problem discussed in quantum mechanics texts, often

Žreferred to as spreading of the minimum uncer-
. Ž w x .tainty wave packet e.g. 6 , p. 64 . It may be solved

using a superposition of plane wave solutions of the
Schrodinger equation, or a simple approximation¨

w xmay be obtained using the uncertainty principle 3,4 .
Briefly the uncertainty principle derivation is as

Žfollows. We delete factors of order unity throughout
.as irrelevant to the discussion. Denote the initial

uncertainty in the clock system position by d ll and0

its mass by m . By the uncertainty principle thisc

implies an uncertainty in its velocity of d ÕG
"rm d ll . Thus the position uncertainty or wavec 0

Ž .packet width spreads with time, and at t it is d ll t
Ž .G"trm d ll . The two uncertainties d ll and d ll tc 0 0

combine as independent random variables, to give a
net result

22 2
d ll Gd ll q "trm d ll 1Ž .Ž .cQ 0 0

ŽAmelino-Camelia and Ng and van Dam add the two
uncertainties linearly, which gives essentially the

.same final conclusion. The net uncertainty is mini-
mum at d ll 2 f"trm , so thatc0

"t " ll
2

d ll G f 2Ž .Q m m cc c

This quantum uncertainty limit is taken to be intrin-
sic to the length measurement process.

We emphasize, as stated in the introduction, that
Ž .the uncertainty limit 2 is quite correct for a freely

moving quantum clock whose wave function evolves
according to the Schrodinger equation during the¨
macroscopic transit time t of the light. We will
critically discuss this limit and its relevance in Sec-
tion 4.

3. Review of the total uncertainty limit

w xAmelino-Camelia 1,2 observes that whatever the
nature of the clock system, it must have a
Schwarzschild radius less than its characteristic size
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d, or the measurement light could not escape the
gravitational field of the clock system and be sent to
the mirror; that is, Gm rc2 Fd. Combined with Eq.c
Ž .2 this gives a total uncertainty limit of

ll G" ll ll 2
P2

d ll G f ,T 3d dc

2ll llP
d ll G Amelino-Camelia 3Ž . Ž .(T d

w xThis equation is the basis of Ref. 1 , where d is
taken to be of order ll . The suggestion is then madeP

that the uncertainty may be detectable using large
interferometers designed for the detection of gravita-
tional waves. Indeed, the uncertainty bound appears
already to be violated experimentally.

w xNg and van Dam 3,4 are more specific about the
clock and assume that it contains two mirrors sepa-
rated by a distance d, and that a pulse of light
bounces back and forth between the mirrors. One
tick of the clock takes a time drc, which they take
to be a fundamental discretization error, d tGdrc.
ŽThat is, they assume that the light pulse cannot be

.detected while between the mirrors. This implies an
error in the length measurement of d llGd. Finally,
the assumption is made that the clock system is
spherically symmetric and larger than its
Schwarzschild radius. Then there is a fundamental
error in the length measurement due to the mass of
the clock of roughly

Gmc
d ll G 4Ž .G 2c

This gravitational uncertainty limit is taken to be
Ž .intrinsic to the length measurement process. Eq. 4

tells us that the fundamental uncertainty in a distance
measurement is approximately equal to the local
deviation of the spacetime metric from Lorentzian.
We will critically discuss this in Section 5.

Ng and van Dam then combine the quantum and
gravitational uncertainty limit and eliminate the clock

Ž . Ž .system mass by multiplying Eqs. 2 and 4 , which
gives

"G
3 2

d ll G ll s ll ll ,T P3c
1r32

d ll G ll ll Ng and van Dam 5Ž . Ž .Ž .T P

This combined uncertainty limit subsumes the indi-
vidual quantum and gravitational uncertainty limit
Ž . Ž .2 and 4 in their further discussion.

4. Comments on the quantum uncertainty limit

Ž . Ž .Eqs. 3 and 5 indicate that spacetime displays
quantum foam properties on scales far above the
Planck length of 10y35 m. For example, a 1 m
distance would be fuzzy to about 10y18 m – about
the distance presently probed by high energy physics

Ž .experiments – according to Eq. 3 , and to about
y23 Ž .10 m according to Eq. 5 . Could spacetime

really be fuzzy on scales this far beyond the Planck
length? The key factor is clearly the ll in the

Ž .quantum relation 2 . As we noted, this equation is
correct provided the clock system is free and evolves
according to Schrodinger’s equation during the posi-¨
tion measurement.

We first comment on the assumption that the
clock system is free. This is important in that it

Ž .leads to the factor of t in the uncertainty limit 2 . If
we assume the contrary, that the clock is bound to
other objects in its vicinity, the uncertainty limit does
not follow. As an example, consider a clock bound
in a simple harmonic oscillator potential V s
m v 2 x 2r2. The width of the ground state wavec

function for such a clock is of order d ll 2 f"rm v,cQ

and the wave function does not spread with time
Ž w x .e.g. 6 , p. 73 .

In the spirit of the work of the previous authors
we may also obtain this result heuristically using the
uncertainty principle. We think of the clock as ‘‘try-
ing’’ to settle into a state with zero momentum at the
bottom of the potential well, but prevented from
doing so by the uncertainty principle, which requires
at least that pG"rx. Then the total energy is

p2 m v 2 x 2
c

Es q 6Ž .
2m 2c

which has a minimum at x 2 s"rm v. This repre-c

sents the position uncertainty of the clock rather than
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Ž .Eq. 2 . In terms of the period t of the oscillator weo

may thus write the position uncertainty limit as

" "to2
d ll G s 7Ž .Q m v 2p mc c

This has the same form as the uncertainty limit
obtained by Wigner, but with the time of observation
replaced by the period of the oscillator. Whereas the

Žtime of observation must be macroscopic as large as
.desired! the period of the oscillator can be made as

small as desired in principle – and quite small in
reality. For example if the clock is taken to be bound
like an atom in a crystal the period would be of order
10y12 s. It thus appears that the assumption that the
gedanken clock be free is not necessary and leads to
an unrealistically large distance uncertainty.

We next comment on the assumption that the
clock is truly quantum mechanical, in the sense that
it undergoes unitary evolution according to the
Schrodinger equation during the macroscopic time of¨
observation. This implies that it be sufficiently iso-
lated from its environment that no significant interac-
tions occur. If it is not so isolated, its wave function
will suffer decoherence, which means that the super-
position of plane waves loses phase coherence and
ceases to form a packet. The decoherence may be
caused by interaction with ambient light, air molecule
collisions, restraint by a tie-down system, or even
interaction of the clock with its own components!
For almost any system of larger than atomic size,
decoherence occurs in a time much shorter than that

w xrequired for macroscopic distance measurement 7 .
In addition, the interaction of the clock with its

Ž .environment e.g., a tie-down system may be such
that it remains localized. Loosely speaking, in the
language of the Copenhagen school, we may think of
some interactions as providing position ‘‘measure-
ments’’ on a time scale that is less than macroscopic.
A clock that suffers wave function decoherence or is
subject to essentially continuous position measure-
ments would not have a linearly increasing position
uncertainty, and would thus violate the uncertainty

Ž .limit 2 .
Ž .In summary it appears that Eq. 2 is only relevant

if one chooses to consider a freely moving clock
undergoing unitary evolution according to Schrodi-¨

nger’s equation, with no significant environmental
interactions. Such a clock, if composed of internal
mirrors or other parts, is probably unobtainable, and
even if it could be obtained, would be a very poor
clock.

5. Further comments on the gravitational uncer-
tainty limit

Ž .Eq. 4 of Ng and van Dam, based on gravity, is
interesting but also presents difficulties. The pres-
ence of the measurement clock system certainly pro-

Ž .duces a distortion of spacetime, but Eq. 4 tells us
that it also produces an uncertainty in spacetime
distances of about the same amount! This is a re-
markable statement. Suppose we take it seriously as
an intrinsic property of spacetime and not just an
artifact of the model clock. Since the spinning Earth

Žis certainly an excellent clock the oldest and most
.important one we have we would conclude that

objects in the vicinity of the Earth have a minimum
intrinsic position uncertainty of roughly the
Schwarzschild radius of the Earth, which is about 1
cm. This is manifestly false by many orders of
magnitude.

In general the distances near a massive object of a
given configuration may be determined theoretically
Ž . Žby general relativity and measured by diverse

.means , and the two agree with each other to impres-
Ž .sive accuracy, far better than Eq. 4 would suggest.

This is what we mean when we say that general
w xrelativity is well tested 8 .

6. Comment on the effective hypothetical clock
mass

w x w xAmelino-Camelia 1,2 and Ng and van Dam 3,4
Ž . Ž .use the uncertainty limits 3 and 5 to discuss the

noise in an interferometer such as the LIGO test
model. Both are based on the quantum uncertainty

Ž .limit 2 . Despite the preceding comments let us
Ž .suppose that Eq. 2 is correct. Then for small hypo-

thetical clock masses it is the operative bound, and
we may use noise measurements to place a lower
limit on the effective mass of the hypothetical clock
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w x Ž .mass. Following Ref. 1 we use Eq. 2 and write
the variance of the noise as

"t fmax 22
d ll s s S f df 8Ž . Ž .HQ 2m 1rtc

where S is the spectral density of the noise due to
Ž .space time foam in Eq. 2 . From this it follows that,

if the maximum frequency cutoff f is reasonablymax

large,

" 1
S f s 9Ž . Ž .(2m fc

For the LIGO test model the measured noise limit is
y19 1r2 w xabout 3=10 mrHz at 450 Hz 9 , which

places a lower limit on the hypothetical clock mass
of about

"
m G f3 g 10Ž .c 2 22 f S

This is a remarkably large mass; it exceeds the mass
of the essential working parts of wristwatches that
many of us are wearing at this moment. As such, it
hardly seems plausible as a fundamental property of
spacetime.

7. Summary

Our analysis indicates that the quantum uncer-
Ž .tainty limit 2 is based on assumptions that are

neither realistic nor necessary. A quantum clock
bound in a potential well does much better than the
postulated limit, as does a macroscopic clock which
interacts continuously with its environment.

Ž .In addition, the gravitational uncertainty limit 4
suggested by Ng and van Dam appears to imply a
fundamental distance uncertainty of about 1 cm near
the surface of the Earth, which is contrary to obser-
vation.

Our conclusion is that the uncertainty limits used
are artifacts of the choice of a particular type of
hypothetical clock, and are non-fundamental in na-
ture. There is thus no reason at present to believe
that quantum uncertainty manifests itself at scales

Žvery much larger than the Planck length. For a
derivation of the Planck length as the minimum

w x w x .length see Refs. 10 and 11 .
We note in closing that we know of only one way

that quantum spacetime foam might be detectable in
the lab in the relatively near future. Arkani-Hamed,

w xDimopoulos and Dvali 12 have noted that gravity
has been probed in the laboratory only down to
distances of about 1 cm. Based partly on considera-
tions of dimensionality, they suggest that gravity
may operate quite differently at smaller distances,
and that the ‘‘effective Planck scale’’ may conse-
quently be only a little beyond the electroweak en-
ergy scale now probed in high energy experiments.
Experimental tests of this idea using table-top sized
apparatus will soon be under way.
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