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Abstract: The authors generalise the concept of the geometric phase in stochastic kinetics to a non-cyclic
evolution. Its application is demonstrated on kinetics of the Michaelis–Menten reaction. It is shown that the
non-periodic geometric phase is responsible for the correction to the Michaelis –Menten law when
parameters, such as a substrate concentration, are changing with time. The authors apply these ideas to a
model of chemical reactions in a bacterial culture of a growing size, where the geometric correction
qualitatively changes the outcome of the reaction kinetics.

1 Introduction
Biochemical reactions are typically characterised in
stationary in vitro environments with the hope that their
measured properties will hold in vivo. There are clearly
many important physiological reasons why this
extrapolation may fail. In this article, we focus on one
particular reason that has little to do with the physiology,
but rather derives from the fact that rates of complex
chemical reactions may have non-trivial corrections
because of slow, adiabatic drift of (internal) kinetic
parameters of the system [1].

The class of phenomena we study is related to the
celebrated Berry’s phase in driven quantum mechanical
systems [2], which predicted a contribution to the phase
of an adiabatically changing wave function in the form
of a integral over the parameter trajectory. Since the
original Berry’s discovery a number of its generalisations
were proposed, for example, to non-abelian and non-
adiabatic regimes. Similar geometric phases were also
found in other fields, for example, in dissipative
dynamics [3–7].

Recently, new geometric phases were studied in the
domain of purely classical stochastic kinetics [8–10]. They
were shown to be responsible for the stochastic pump and
other ratchet-like effects, and thus they are of clear
importance for the theory of chemical enzymes, and
specifically molecular motors, operating in strongly
stochastic environment [11, 12]. This finding raises
possibilities of various generalisations of the geometric
phase. For example, recently its non-adiabatic counterpart
was introduced in [13], and it was shown to be responsible
for a non-adiabatic current contribution that has no
analogue under stationary conditions.

In this work, we study another generalisation of the
geometric phase in stochastic kinetics, namely to a non-
periodic evolution in the parameter space. Such non-cyclic
geometric phases have been known previously in quantum
physics and optics [14–22]. We will show that the non-
cyclic geometric phase in stochastic kinetics can be
unambiguously defined, and that it can be naturally
interpreted as being responsible for the leading non-adiabatic
correction in the expression for stochastic fluxes, which can
‘qualitatively’ change kinetics of a chemical reaction.
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2 Generating function for the
Michaelis–Menten reaction
Consider a catalytic conversion of one type of molecules,
called the substrate, into another type, called the product,
via an intermediate reaction with an enzyme. Schematically,
the reaction can be represented as

S + E !
k1ns

k−1
SE !

k2

k−2np
E + P (1)

where ki , i = −2,−1, 1, 2 are kinetic rates of corresponding
elementary processes, the S and P denote substrate and
product respectively, ns and np stand for their
concentrations, and E is the enzyme molecule. S and P
interact via creating a complex SE which is unstable and
dissociates either back into E and S or forward into E and
P. In the simplest version of the Michaelis and Menten
(MM) mechanism, enzymes catalyse the process but are
not modified in any reactions. However, generalisations are
certainly possible [23, 24].

The reaction [25] is the most fundamental and the
simplest enzymatic biochemical process. In their 1913
article [25], MM considered a strongly non-equilibrium
situation of reaction (1), neglecting the backward
E + P " ES association, which can be done for
np ≪ k1ns/k−2. However, here we keep this reaction for
generality. If the number of S and P molecules is much
larger than that of the enzymes, the latter have to perform
many substrate conversions each in order to change S and
P concentrations noticeably. This is traditionally used to
simplify the reaction kinetics since one can assert that
enzymes operate in a quasi-steady state at current substrate
and product concentrations.

Stochastic kinetics of the conversion of S into P is
conveniently described by the moments generating function
Z(x, t) (mgf) and the cumulants generating function
S(x, t) (cgf) defined as [8, 26, 27]

Z(x, t) = eS(x,t) =
∑1

n=−1
Pne

inx (2)

where Pn is the probability to find net n product molecules
generated during the observation time t (back conversion is
counted with the negative sign, i.e. n , 0 means that more
product molecules were converted back to substrate than
substrate into the product). For a small number of enzymes,
they can be considered statistically independent over short
periods of time, and the cgf’s are additive, that is, the cgf of
reaction events produced by n enzymes is n times the cgf of
a single enzyme. Thus we will restrict our study only to the
case of a single enzyme without much loss of generality.

It is convenient to introduce additional generating functions
UE =

∑1
n=−1 PnEe

inx and USE =
∑1

n=−1 PnSEe
inx, where

PnE and PnSE are the probabilities that, at a given time, the
net number of generated product molecules is n and the
enzyme is in the unbound/bound state. Then the master
equation for the entire process is

d
dt

PnE = −(k1ns + k−2np)PnE + k−1PnSE + k2P(n−1)SE

d
dt

PnSE = −(k−1 + k2)PnSE + k1nsPnE + k−2npP(n+1)E

(3)

Multiplying (3) by eixn and summing over n we find the
equation for the generating functions

d
dt

UE

USE

( )
= −Ĥ (x, t)

UE

USE

( )

(4)

where

Ĥ (x, t) =
k1ns + k−2np −k−1 − k2e

ix

−k1ns − k−2npe
−ix k−1 + k2

( )

(5)

If we set n = 0 at initial moment t = 0, then the initial
conditions for (4) are UE(t = 0) = pE(0), and
USE(t = 0) = pSE(0), where pE(0) and pSE(0) are
probabilities that the enzyme is free/bound, respectively.
Additionally, note that Z(x, t) = UE(x, t)+ USE(x, t).
Thus the formal solution for mgf (2) can be expressed as an
average of the evolution operator

Z(x, t) = k1|T̂ e−
't
0
Ĥ (x,t)dt

( )
|p(0)l (6)

where k1| = (1, 1)T, |p(0)l = ( pE(0), pSE(0)) and T̂ is the
time-ordering operator.

Before we proceed with the case where parameters are time
dependent, it is instructive to look first at the stationary
regime. To simplify (6), one can find normalised left and
right eigenvectors ku0/1|, |u0/1l and corresponding
eigenvalues e0/1 of the operator Ĥ (x), where indexes 0 and 1
correspond to the two eigenvalues with the smallest and the
largest real parts, respectively. There is one left and one right
eigenvectors for each eigenvalue, that we will distinguish by
bra and ket notation. Since the operator Ĥ (x) is not
Hermitian, we do not assume any relations between
components of bra and ket eigenvectors corresponding to the
same eigenvalue.

Every vector, such as |p(0)l can be expressed as a sum of
eigenvectors of Ĥ (x), for example

|p(0)l = ku0|p(0)l|u0l+ ku1|p(0)l|u1l (7)

where we define ka|bl = a1b1 + a2b2 to be a standard
scalar product of two vectors. Substituting (7) into (6),
for the time-independent Hamiltonian we find the
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steady state mgf

Zst(x, t) = e−e0(x)t+ln(k1|u0lku0|p(0)l)+e−e1(x)t+ln(k1|u1lku1 |p(0)l)
(8)

At time scales t ≫ max[1/k−1, 1/k2, 1/(k1ns), 1/(k−2np)],
the second term in (8) is exponentially suppressed in
comparison to the first, and the expression for the mgf
simplifies to

Zst(x, t) ≃ e−e0(x)t+ln(k1|u0lku0|p(0)l) (9)

Terms analogous to −e0(x)t in (9) have been studied
previously [8, 27]. The second term is less common in the
literature: this is the boundary term that does not grow
with time and depends on the initial conditions and the
averaging over the final states of the enzyme. One can
disregard it in comparison to the first contribution when
t " 1. However, we note that its relative effect decays as
1/t, that is, not exponentially, in contrast to the e1
term in (8).

At the first look, the boundary term leads to a
contradictory result after setting t " 0, that is at the initial
moment of the evolution. In this limit, the boundary term
does not disappear, namely

Sbnd|t=0 = ln(k1|u0(0)lku0(0)|p(0)l) = 0 (10)

However, we expect Sbnd|t=0 to be zero, since n|t=0 = 0, so
the mgf should be identically equal to unity. The apparent
contradiction is resolved by noting that (9) was derived
assuming t " 1, and it is simply an invalid approximation
for t " 0. In other words, the boundary term is
responsible for the initial fast relaxation to the stationary
regime. For more insight, one can calculate the
contribution of the boundary term to the average number
of generated product molecules. Using the normalisation
condition pSE(0) = 1− pE(0) one can find

nbnd = −i
∂Sbnd|t=0

∂x

∣∣∣∣
x=0

=
(k2 + k−2np)(k2 + k−1 − KpE(0))

K 2 (11)

where K = k−1 + k2 + k1ns + k−2np. If one assumes that the
initial probability pE(0) for the enzyme to be free is at the
equilibrium value pE(0) = (k2 + k−1)/K , then (11)
produces nbnd = 0, as expected. To confirm this, one can
also derive (11) by a standard master equation approach.
That is, calculating the average number of new product
molecules nbnd(t), one would find that, after a sufficiently
long time

n(t) = nbnd +
k1k2ns − k−1k−2np

K
t (12)

The second term in (12) is the average number of the product

molecules produced during time t at a steady state. It is the
standard prediction for the reversible MM enzyme, and the
first term is a correction, which is non-zero when the initial
state of enzymes is not the same as its steady state.

3 Non-cyclic geometric phase
in stochastic kinetics
Assume now that there are several slowly time-dependent
parameters in the model. We will group them in a vector
l. In the case of the MM process, one can view these
time-dependent parameters as concentrations of the
substrate and the product, l = (ns, np). However, the
discussion in this section is completely general.

Following [7], we partition the time into small intervals,
over which kinetic rates can be considered almost constant.
We insert the resolution of the identity operator,
1̂ = |u0(t)lku0(t)| + |u1(t)lku1(t)|, in (6) after every such an
interval. One can find then that the boundary term
becomes Sbnd = ln(k1|u0(t)lku0(0)|p(0)l). It is sensitive to
the redefinition of eigenstates of the Hamiltonian (5) such
as |u0l " ef(l)|u0l and ku0| " ku0|e

−f(l). Therefore taken
alone, it has no direct meaning.

It will be convenient to rewrite the boundary term as a sum
of a steady-state part (10) and a term that is an integral of a
pure derivative, that is

Sbnd = Sbnd|t=0 +
∫

c
P · dl, P = ∂l lnk1|u0l (13)

where c is the contour in the space of the variable parameters.
By analogy with [8], and including the boundary
contribution (13), the mgf in the quasi-steady-state limit
can be written as an exponent of a sum of two terms

Z(x) = eSgeom(x)+Sqst (x) (14)

where

Sqst(x) = −
∫t

0
e0(x, t

′) dt ′ + Sbnd|t=0 (15)

is the quasi-stationary part of the generating function
averaged over time. This is the part that morphs into the
steady-state result (9) for fixed values of all parameters.

The other term in (14)

Sgeom =
∫

c
[P(l)− A(l)] dl, A(l) = ku0|∂lu0l (16)

is the ‘geometric phase’ contribution responsible for
additional reaction events. A is called the ‘Berry
connection’. Sgeom has no analogue in the strict steady-state
regime.
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We further mention that definition (16) differs somewhat
from those used for the non-cyclic geometric phase in
quantum mechanics. For example, Pati and coworkers
define the non-cyclic geometric phase as ggp =

'
c [A(l)−

P′(l)] dl, where P′ = −Im(ku(l(0))|∂lu(l)l/ku(l(0))|
u(l)l). In the present context, the meaning of such definition
is unclear, whereas the geometric phase defined in (16) is
derived directly from the exact representation of the mgf.

Since P is a pure derivative, it is important only when
looking at an evolution along an open path in the
parameter space. If the parameter vector l returns to its
initial value at the end of the evolution, expression (16)
becomes equivalent to the full-period geometric phase
defined in [8].

4 Corrections to the reversible
MM law
Consider now the average product creation rate in the MM
system under the slow parameter evolution. The average
number of new product molecules is
kn(t)l = −i(∂Z(x, t)/∂x)x=0. Therefore just like the full
cgf, the average rate of the product production
k J l = dkn(t)l/dt can be written as a sum of the quasi-
stationary Jqst and the geometric Jgeom contributions

k J l = Jgeom + Jqst =
d
dt

∂Sgeom
∂x

∣∣∣∣
x=0

+ ∂e0(x, t)
∂x

∣∣∣∣
x=0

(17)

Here we disregard the boundary term (11) since it
contributes to average currents only when enzyme states
are far from the equilibrium with substrate. It is
irrelevant on time scales that are much larger than a
single enzyme turn-over or when observation begins
with almost equilibrated enzyme states. The geometric
phase is time dependent only via the time dependence
of the parameter vector l. In the case of MM reaction
with time-dependent concentrations ns and np, the time
derivative of the first term in (17) can be expressed as
d/dt " (dns/dt)∂/∂ns + (dns/dt)∂/∂np. Substituting the
eigenvectors and eigenvalues of Ĥ (x, l) into (17),
we find

Jqst =
(k1ns(t))k2 − (k−2np(t))k−1

K
(18)

Jgeom = −(k2 + k−1)
(k2 + k−2np(t))(k1ṅs(t)+ k−2ṅp(t))

K 3

(19)

One can recognise Jqst as the average current for a steady
state with fixed values of parameters. Our results show
that there is a correction to this quasi-steady current
when concentrations of the substrate and the product
have their own time-dependent evolution. Specifically,
in the case of MM kinetics, that is when np ≃ 0, the

average rate of the coarse grained MM reaction per
one enzyme becomes

k J l ≃ k2ns
ns + [(k2 + k−1)/k1]

− (k2 + k−1)
k2k1ṅs(t)

(k1ns + k2 + k−1)
3

(20)

That is, even in this case, the time dependence of the
substrate concentration introduces corrections to the
reaction rate. Generalisation of our approach to more
complex enzymatic mechanisms is straightforward [23].

It is possible to understand result (19) with a simpler
approach, which, unfortunately, is hard to generalise for
higher current cumulants to demonstrate the geometric nature
of the effect for all of them. The probability pE of the enzyme
to be unbound evolves according to the master equation

d
dt

pE =−[k1ns(t)+ k−2np(t)]pE + (k2 + k−1)(1− pE) (21)

with the solution

pE(t) = (k2 + k−1)
∫t

0
e
−
't
t1
[k1ns(t)+k−2np(t)+k2+k−1]dt dt1 (22)

The information about the initial state is quickly forgotten.
Hence only the time interval near t1 = t substantially
contribute to (22). In this time interval, we can approximate
ns/p(t) ≃ ns/p(t)− (t − t)ṅs/p and the exponent of the
integral over t in (22) can be estimated as

e
−
't
t1
[k1ns(t)+k−2np(t)+k2+k−1] dt

≃ e−[k1ns(t)+k−2np(t)+k2+k−1](t−t1)

× 1+
k1ṅs(t)+ k−2ṅp(t)

2
(t − t1)

2
( )

(23)

Performing the remaining integrationwe find the expression for
the probability of the enzyme to be unbound

pE ≃ k2 + k−1

K
+

(k2 + k−1)(k1ṅs(t)+ k−2ṅp(t))
K 3 (24)

From (24), one can calculate the average reaction rate and check
that indeed, it is the sum of the quasi-stationary and the
geometric components determined in (18) and (19)

J (t) = (1− pE(t))k2 − pE(t)k−2np(t) = Jqst + Jgeom (25)

5 Geometric effects in a growing
cell culture
The geometric correction (19) is generally much smaller than
the main contribution (18) if the number of the enzymes is
much smaller than that of the substrates and the products.
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However, this small correction has specific properties that can
change system behaviour qualitatively.

The quasi-steady-state contribution to the kinetic rate in
(18) can be vanishing because of a symmetry relation, such
as the detailed balance condition, which guaranties that all
chemical fluxes at the thermodynamic equilibrium state are
zero on average. Thus, if a system is slowly driven
externally so that it always remains close to the
thermodynamic equilibrium, the quasi-steady-state
approximation will predict zero average product creation. In
contrast, the geometric contribution does not have to
remain zero, and it will result in a qualitatively novel effect.

To show this, consider reaction (1) with concentrations of
substrate and product ns and np large and treated
deterministically. Let us suppose that the system is initially
in an equilibrium

k1k2ns(0) = k−1k−2np(0) (26)

Suppose that process (1) happens inside a living cell that
grows and divides in its usual cycle. Assume that all
molecules participating in reaction (1) are not involved in
growth-related processes; that is, the reaction describes
metabolism of a rare compound, largely decoupled from
cell division. Then when the number of cells in the colony
increases from the initial value N(0) to N(t), the
concentrations of substrate and products will decrease
approximately as

ns(t) = ns(0)
N (0)
N (t)

, np(t) = np(0)
N (0)
N (t)

(27)

Such experiments are possible in modern microfluidic
nanolitre chemostat platforms coupled to ion-mobility mass
spectrometry for identification of efflux metabolites (see
e.g. Enders et al. in this issue [28]).

Since the ratio ns(t)/np(t) is not affected by this time-
dependent dilution, the system remains near equilibrium,
and the quasi-steady state reaction rate remains zero.
However, as ns and np change with time, there will be
non-adiabatic changes to them. The average number of
additional product molecules, produced by a single
enzyme is completely determined by the geometric part
of the rate (19) (see eq. (28))

Equation (28) shows that the average number of new
product molecules per one enzyme is a fraction of
unity, which compares to a large number of already

existing substrate and product molecules. However, the
geometric contribution qualitatively changes the result,
predicting on average non-zero amount of new product
molecules, which is not expected from the standard
MM treatment. The effect becomes distinguishable
from noise when the average number of generated
product molecules, which is of the order of the number
of enzymes in the culture, nE, is comparable to the
size of a typical fluctuation of the number of product
molecules in equilibrium. The latter can be estimated as***********
np(0)ncells

√
, where ncells and np(0) are the numbers of

cells and product molecules per cell at the beginning of
the observation. That is, the geometric condition will

be observable if n ≫
***********
np(0)ncells

√
/nE. This falls within

the domain accessible to modern experimental
techniques [28]. For example, if np(0) ( 104, and the
number of enzymes per cell is nE ≫ 102, this condition
is satisfied even for a single cell.

Result (28) would be valid only if we could treat
concentrations as parameters, changing only because of the
external volume growth. In a closed system chemical fluxes
eventually should be compensated by the reverse fluxes
because of the violation of the steady-state condition (26),
or by efflux of extra generated product molecules. Since
detection of the deviation of the ratio ns/np from the
equilibrium value by an effect of the order of /nE/np(0) is
experimentally hard, we believe that it is the efflux mass-
spectrometry experiments [29] that carry the highest chance
of measuring the geometric fluxes in growing cell cultures.

Considering intermediate stages of the culture growth, one
can notice that the number of newly produced molecules
depends only on the initial and the final cell numbers: that is,
the average number of produced proteins depends on the
current state of the system, but not on how it got there or
where it is going from there. This can be utilised by living
organisms in order to control some processes that should
depend on the stage of the cell cycle only. Although this effect
is very small, it should be interesting to explore its detectability
in vivo and employ it in artificial biological circuits design.

6 Discussion
In this article, we generalised the notion of the geometric
phase in evolution of the mgf to non-periodic time-
dependent processes. The expression for our non-periodic
geometric phase is different from the ones often
encountered in quantum mechanical applications. Its

n =
∫1

N (0)
dN

[

− (k2 + k−1)
(k2 + k−2npN (0)/N )(k1∂N (ns(0)N (0)/N )+ k−2∂N (np(0)N (0)/N )

K 3(v)

]

= k1k2ns(0)
(k2 + k−1)(k−1 + k1ns(0))

(28)
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uniqueness follows from the existence of a special gauge that
should be imposed in order to describe stochastic kinetics
correctly.

We showed that the phase is responsible for non-adiabatic
corrections to the standard Michaelis–Menten
approximation. Such corrections are usually small in
comparison to the quasi-steady-state predictions. However,
they explicitly break time-reversal symmetries and, therefore
can produce a qualitatively different result when a chemical
system is driven closely to a thermodynamic equilibrium, as
in the cell culture growth model that we discussed.

We studied only the simplest of its realisations. The
introduced non-periodic geometric phase is completely general
and should appear practically in any interacting chemical
system driven by external fields. Other interesting examples will
surely emerge with time. We expect the greatest opportunities
for biological relevance in the domain of molecular motors,
where geometric effects play an important role as is [11].
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