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Abstract 

The usual proof of renormalizability using the Callan-Symanzik equation makes explicit use 
of normalization conditions. It is shown that demanding that the renormalization group functions 
take the form required for minimal subtraction allows one to prove renormalizability using the 
Callan-Symanzik equation, without imposing normalization conditions. Scalar field theory and 
quantum electrodynamics are treated. © 1999 Elsevier Science B.V. 

An elegant and compact proof of the perturbative renormalizability of scalar field 
theory can be given using the Callan-Symanzik equation [ 1,2]. This proof constructs 
the renormalization group functions and renormalized correlation functions order-by- 
order without ever encountering an infinite quantity. The steps in this proof are as 
follows: 
( 1 ) One proves that there is a skeleton expansion for Green functions--this is the step 

where the renormalizability of the theory appears. 
(2) One selects normalization conditions in order to define the renormalization parts; 

in other words, the normalization conditions specify the finite renormalizations that 
must be fixed order by order in the perturbative subtraction of infinities. The aim o f  

this paper  is to f ix these finite renormalizations in an entirely different manner, as 
we explain below. These normalization conditions are in one-to-one correspondence 
with independent superficially divergent irreducible proper vertices (i.e. divergent 
vertices that are not related to other divergences by Ward identities). 

(3) Using the normalization conditions at every step to fix the finite renormalizations, 
one establishes simultaneously the existence of the Callan-Symanzik equation, and 
the existence of finite Green functions, order by order in the coupling constant, 
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using differentiations with respect to the mass parameter to reduce the degree of 
divergence of any given irreducible vertex. 

While this method is usually applied directly in four dimensions, it is easy to extend 

it to dimensions 'near '  four, as described explicitly in [2].  

The drawback in this proof  is that it makes explicit use of  normalization conditions. 
This makes it awkward to establish the existence of renormalized Ward identities in 
theories with non-linear symmetries, whereas these renormalized identities are trivially 

obtained, for theories in which dimensional continuation preserves the symmetries, if 
one uses minimal subtraction [2].  (There are, of  course, theories in which dimensional 
regularization does not preserve such symmetries. In these cases the methods of the 
present paper do not apply.) Of  course, on general grounds, one knows that there is a 
finite renormalization that takes one from the renormalized theory with normalization 
conditions to the renormalized theory with minimal subtraction of infinities. However, 
it should be possible to show the renormalizability with minimal subtraction directly, 
instead of via the construction of the finite renormalization. This is the aim of the present 

paper. 
There appears to be no way to avoid using dimensional continuation to do what 

we wish to do - - i n  essence, if we eschew the use of  normalization conditions, some 

additional information is required to fix the finite renormalizations. In our proof, these 
finite renormalizations are fixed by requiring specific forms for the renormalization 

group functions, as functions of  the dimensional continuation parameter. Notice that we 
never use dimensional regularization, so we are still dealing only with finite quantities, 

in accord with the approach of [ 1 ]. 
In order to avoid confusion, we wish to emphasize that there is an entirely different 

approach to using the renormalization group to prove renormalizability, which uses the 
Wiisonian renormalization group [3].  The relationship between the Cal lan-Symanzik 

equation approach and the Wilsonian approach is discussed in [4].  
We first consider Euclidean q~4 theory in 4 - e dimensions. Im'l(pi; qi)  denotes the 

renormalized IPI n-point function with momenta Pi, and 1 insertions of  ~ 2 

To be precise, we show that it is possible to compute, order by order, renormalized 
correlation functions which satisfy the Callan-Symanzik equation [2] 

[ ~m 3 n ] - ~ r / ( g )  - ( g )  r " , t ( m , .  + (f l (g)  - e g ) ~ g  lr/2 .. ,Pn;ql . . . . .  ql) 

= me(2 + ~(g))F"' t+l(Pl . . . . .  Pn;qt . . . . .  qt,O), (1) 

with /3, r/, r/z, 6 power series in the coupling g alone, and therefore finite order by 
order. This form of the renormalization group functions ensures that the renormalization 
constants are Laurent series in l / e ,  with no finite pieces, as is appropriate for minimal 
subtraction [2].  In this scheme, the normalization conditions are replaced by 

FZ'0(p = 0) =m2(1 + a),  

3-~2-F2'°(p = 0) = 1 + b, 
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/.4,0(pi = 0) = g m ' ( l  + c) ,  

/-2,1 (Pi = 0; q = 0) = 1 + d, (2) 

where a(g, e) ,  b(g, e) ,  c(g, e),  and d(g, e),  are power series, at least O(g), which we 
shall show to be finite as e + 0. These three 1PI functions are the primitively divergent 

vertex functions in this model. We let Ar stand for any quantity A computed up to order 
gr in the perturbative expansion. 

We write Eq. (1)  in the form 

m 0 _ • g ~  r.+l = ~ J.+l -~m 2"q + Ir12 - -  I'n'l + ]r+l 

(3) 

The proof  proceeds by induction, so it is important to make explicit the g dependence 
of all quantities at the lowest order, fl(g) = O(gZ), r /(g) = O(g2) ,  r/2(g) = O ( g ) ,  
and 6(g) = O(g) [2] .  Furthermore, b = O(g2) ,  a ,c ,d  = O(g), F 43 = O(g2) ,  and 

F 2'2 = O(g), as can readily be seen from the lowest order diagrams. 

The induction hypothesis is that the primitively divergent vertex functions have been 
rendered finite up to and including O(g') ,  except for F 4'° which is assumed finite up 

to order O(gr+l). This implies that at, b,, Cr, and dr a re  finite. Further, we assume that 

/3r+l is finite, as are Or, r/2,r, ~r. 
Consider Eq. (3)  for n = 4, l = 0. Given the induction hypothesis and the fact that 

/-4,t has a skeleton e x p a n s i o n , / ~ 2  is finite. Then all terms on the r.h.s, of  Eq. (3) are 
finite to  O(g r+2) if we can show that the combination (2r/g - / 3 ) , + 2  is finite, To show 

this, we evaluate (3)  at Pi = 0 = q, giving 

(2r/g - / 3 ) r + 2  + (•geO'~-c~ = C(•,g)r+2, (4)  
\ ag J.+2 

where C,+2 is finite, and hence can be uniquely written as Cr+2 = (A (g) + •B(~,  g)),+2, 
where A,+2 and Br+2 are finite. Thus, there exists a unique solution of (4)  with Cr+~ 
finite, and ( 2 r / g -  fl)r+e finite and • independent (i.e., ( 2 r / g - / 3 ) r + 2  = A(g)r+2, 
(g2OgC) r+2 = B(e,g),+2), Of course, we know nothing of the finiteness of  r/r+] or of  
/3,.+2 separately, but we do not need this information to integrate Eq. (3) for n = 4, 1 = 0 
to obtain F 4'° at arbitrary momenta.  Indeed, we now see that 

O l ~ 2 ( P i ; g , •  ) = g m ' f  , g , •  (5)  m O - • g ~ g  
-~m 

for some finite dimensionless function f = O(g), with /~ff2(O; g, • )  = gm~(1 + Cr+l) 
finite. Since 

1 

[ Oil":( ) O _ •g-~g a ~m m - -  a , gc r ' , e  = - f  g , e  
am 

0 
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for any function f regular at zero momentum and coupling, such that f ( 0 ,  0, e) = 0, 
we have 

t 

l~,.'°+2(Pi;g,e)=gme[1--/d--~f(ee~,geeE, e)] .  (6) 

0 

As is standard [ 1,2], this assumes that the limit p ~ 0 does not introduce any pathologies 

into the integral over oz, so that the finiteness already proved for Cr+l suffices to render 

Eq. (6) well defined. In perturbation theory, for m > 0, this regularity at low momenta 

is physically reasonable. 

The next step in the proof requires showing the finiteness of  F 2'1 to O(g r+l ). Using 

the skeleton expansion of/-2,2 and the induction hypothesis, Eq. (3) for n = 2, 1 = 1 has 

a r.h.s, which is finite to O(g "+l) if the combination ( r / +  r/2)r+l is finite. As above, 

we can evaluate at Pi = 0 = q to give 

-eg-~gd = (rl + rl2 - /3j-~d) + (rl + rl2)d + (2 + ~)m2F2"2(O;O). (7) 

This can be written as 

/ 8 " X  
(/7 -i t- ~ 2 ) r + l  q- | e g ' d ]  = D ( e , g ) r + l  , 

\ ag )r+~ 

where D(e,g)r+l is finite, and thus we can conclude that we may uniquely take dr+l 

to be finite, and ( r / +  g]2)r+l to be finite and e-independent. We can integrate Eq. (3) 

for n = 2, 1 = ! since it now takes the form 

m 3 -eg~g m ~m Fr~_l(Pi;q;g,e) = fr m ' - -  g,e , 

with f l  finite to  O ( g r + l ) ,  given the finiteness of  ( r / +  ~ 2 ) r + l  and dr+l. 

Having shown that F 2,j is finite to the next order, we can now consider F 2'°. Eq. (3) 

for n = 2, / = 0 has a r.h.s, which is finite if r/r+l and 6r+l are finite. First note that 

?-~-V2"'] 2 = O(g2). 
ogp 2 p =0 

Then Eq. (3) for n = 2, 1 = 0, gives, after differentiating with respect to p2 at zero 

momentum, 

E ab '~  ,7 + g ~  Jr+, = e(e,g)r+,,  (8) 

where E(e,g)r+l is finite. As above, we deduce that there exists a unique solution 
of  (8) with br+r finite and r/r+t finite and independent of  e. Then with the known 
finiteness of  (2r/g - fl)r+2, and ( r / +  r/2)r+l, we find that fl is finite to O(gr+2), with 
r/2 finite to O(g r+~). 

We now consider Eq. (3) for n = 2, l = 0 at p = 0, and find after subtracting Eq. (7),  
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0 
2 (a  -- d)  - Eg-~g(a - d)  = r / ( a  - d)  + (8 - r/2) (1 + d) 

0 
- f l -~g (a  - d)  - (2 + ~)FZ'2(O;O)m 2. (9) 

Observe that there is no way to determine 8 - r/2 independent of  a - d. This should 

be expected. In minimal subtraction 6 = r/2 is equivalent to Zm = Z2, (Zm and Z2 

are the multiplicative renormalization constants for the mass and the -½~b 2 insertion, 

respectively). In fact, in any scheme Zm/Z2 is a finite quantity [2].  In our present 

approach, we only deal with finite quantities, so we can consistently set 8 = r/2, thereby 
determining a unambiguously (since d is already known). 2 It is possible to let 8 = 

8(g,  e) and impose a = b, i.e. let m be the actual physical mass. 

To complete our induction, we must exhibit a finite integral expression for F 2,° to 

O(gr+l). Having proven the finiteness of  r/r+l, 8r+l, ar+l, br+l, Eq. (3) for n = 2, l = 0 

implies that (F2 ' ° (p )  - m 2 ( 1  + a) - p 2 ( 1  + b))r+l satisfies an equation of  the form 

Im~mm0 - 'g~gg0] ( F 2 , 0 ( p ) _ m 2 ( l + a ) _ p z ( l + b ) ) r + l = m 2 f ( p ; g , e ) ,  ( I0 )  

for a finite function f = O(p  4) for IPl small. The integrated form of Eq. (10) requires 

showing that 

I 

o 

is finite, but this is obvious from the behaviour of  f for IP] small. 

We have therefore completed the induction step, showing that the Callan-Symanzik 

equation can be used to prove the renormalizability of  t~ 4 theory in the minimal sub- 

traction scheme, without ever imposing normalization conditions. 

We turn now to an extension of  this reasoning to the case of  quantum electrodynamics. 

This was considered by Blaer and Young [5] ,  but the existence of  renormalized Ward 

identities seems to have been assumed without discussion in their work. In our formu- 

lation, since we use minimal subtraction, the existence of  renormalized Ward identities 

is automatic. In the following, we show how the Ward identities constrain the renormal- 

ization group functions. The remaining steps then follow more or less as in Ref. [5] ,  

and are not reproduced here. 

We follow the notation of  Ref. [2] ,  and consider the case of  massive Euclidean QED, 

with m the mass of  the photon, M the mass of  the electron, and ~ the gauge parameter. 
The complete IPI  effective action, F, may be written as a sum F [ A ,  ~9, (t; e, m, M, ~] = 
F~ + ½ f (m2A 2 + ~-1 ( 0 .  A)2),  where Fs satisfies the homogeneous equation 

2 There exists another solution of (9) for (a - d) with the O(g r+l ) term having an essential singularity at 
E = 0. In our present framework this solution cannot be ruled out, but it prevents the induction from proceeding 
beyond tree level. Using the explicit form of dimensional regularization, this solution can be rejected because 
an essential singularity in • cannot occur at any finite order in perturbation theory. 
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0 6 - 6  [ ~ - ~ + i e M ' / 2 ( ~ 6 ~ - ~ P ~ ) l I ' ~ = O .  (11) 

Thus Fs is gauge invariant. The general form of the Callan-Symanzik equation, differ- 
entiating with respect to M, is 

IM 3 e O n  k rlm O 0 1 
- ~  + ( fl - -~ e ) -~e - ~ n A - -  -~ 7 ~  - -  lrl2 n t- ~ -  m ~m + a ( - ~  

× F n'k't (Pl . . . . .  Pn; rl . . . . .  rk; ql . . . . .  qt) = M( 1 + 6 ) F  n'k'l+l (Pl . . . . .  qt, 0) ,  

(12) 

relating the proper vertex with n photons, k electrons, and l insertions of ~ / ,  to the 
proper vertex with one additional insertion of ~ b  at zero momentum. There are seven 

independent renormalization group functions in this equation, o~,/3, ~A, 7~9, ~m, 6, 72, all 
functions of e, s c, m/M,  with no e dependence. 

For integrating Eq. (12) in a manner consistent with Eq. (11), it is necessary that 
the Callan-Symanzik equation be satisfied by Fs, not just by F. This implies rh,, = ~a 

and r/a ---- - -a .  Further, commuting Eq. (12) with Eq. (11), we find r/a = 2fl/e. Thus, 
we are left with four independent functions, and Eq. (12) simplifies to 

[M3-~-ee2~e2 +rlA{e2~~+m2~---~--'~~--2}--~rl¢,--1712 ] 

x Fn'k'l(pl . . . . .  qt) 

= M( 1 + 6) F ''k'l+l (Pl . . . . .  qt, 0) ,  

The form of the QED vertex functions at zero momentum are much restricted by 

Eq. (1 l ) ,  

F2"°'°~'~ (p = O) = m26 ~'~, 

8P zFO 2,o,0~,~(p = 0 ) = ( 3 - e ) ( l  + a )  1, 

F°'2'°(r = 0) = M( 1 + c),  

c~ F0.2,O(r = 0) = i y ~ ( l  + b), 
Or ~z 

F°'2 ' l  ( r i  = 0 ; q = 0 )  = 1 + d ,  

FJ'2'°~(p = 0; ri = O) = ieM'/2y~( 1 + b ), (13) 

where a, b, c, d are all functions of e, m/M, ~, and e, finite as e J. 0. Note that the 
presence of a photon mass ensures that there are no pathologies associated with these 
conditions, and that we may assume analyticity at zero-momentum. The rest of the 
analysis follows Ref. [5 ], with changes appropriate to minimal subtraction as discussed 
above in detail for scalar field theory. 

In future work, we plan to apply this method of construction of renormalized gauge 
theories to non-abelian gauge theories, using the Curci-Ferrari action [6]. 
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