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Adaptive Rescaling Maximizes
Information Transmission

Adaptation to mean light level ensures that our visual
responses are matched to the average signal in real
time, thus maintaining sensitivity to the fluctuations

Naama Brenner, William Bialek,*
and Rob de Ruyter van Steveninck
NEC Research Institute
Princeton, New Jersey 08540 around this mean. But the fluctuations themselves are

intermittent, such that periods of large fluctuations are
interspersed with periods of relative “quiet.” Recent ob-
servations indicate that the intermittency of natural sig-Summary
nals is of a special form: statistics such as the variance
and correlation function are stationary over some re-Adaptation is a widespread phenomenon in nervous
gions, with slowly modulated parameters over largersystems, providing flexibility to function under varying
regions (Ruderman and Bialek, 1994; Nelken et al., 1999).external conditions. Here, we relate an adaptive prop-
The principle of efficient coding suggests that the ner-erty of a sensory system directly to its function as a
vous system should adapt its strategy to these localcarrier of information about input signals. We show
statistical properties of the stimulus. Evidence for suchthat the input/output relation of a sensory system in
statistical adaptation in the early stages of vision hasa dynamic environment changes with the statistical
been found in the fly (van Hateren, 1997) and in theproperties of the environment. Specifically, when the
vertebrate retina (Smirnakis et al., 1997), where mecha-dynamic range of inputs changes, the input/output
nisms of gain control are well known (Shapley and Victor,relation rescales so as to match the dynamic range of
1979a, 1979b, 1980). From a more functional point ofresponses to that of the inputs. We give direct evi-
view, one would like to observe directly the changesdence that the scaling of the input/output relation is
in processing strategy and to demonstrate that theseset to maximize information transmission for each dis-
changes in fact enhance the efficiency of coding in re-tribution of signals. This adaptive behavior should be
sponse to changes in the statistics of visual inputs.particularly useful in dealing with the intermittent sta-

Here, we investigate the coding of dynamic velocitytistics of natural signals.
signals in a motion-sensitive neuron of the fly’s visual
system. Previous work has shown that this systemIntroduction
adapts to constant velocity signals (Maddess and Laugh-
lin, 1985; de Ruyter van Steveninck et al., 1986), to theOne of the major problems in processing the complex,
variance of spatial image contrast (de Ruyter van Ste-dynamic signals that occur in the natural environment
veninck et al., 1996), and to the timescales in the stimu-is providing an efficient representation of these data.
lus (Borst and Egelhaaf, 1987; de Ruyter van SteveninckMore than 40 years ago, Attneave (1954) and Barlow
and Bialek, 1996). In this work, we focus on adaptation(1961) suggested that steps in the neural processing of
to the distribution from which velocity signals are drawn.information could be understood as solutions to this
We find a dramatic adaptive rescaling of the system’sproblem of efficient representation. This idea was later
input/output relation with the standard deviation of thedeveloped by many groups, especially in the context of
signal distribution. Further, we find that the magnitudethe visual system. Efficient representation requires a
of the rescaling selected by the adaptation process opti-matching of the coding strategy to the statistical struc-
mizes information transmission. Identical adaptive ef-ture of incoming signals. At early stages of the visual
fects occur in response to signals that differ by orderspathway, for example, lateral inhibition or center–sur-
of magnitude in timescale, suggesting that the molecularround organization of receptive fields can be seen as a
and cellular mechanisms underlying these adaptive ef-strategy for reducing redundancy among signals carried
fects span a similar range of timescales.by neighboring neurons. At higher levels of processing,

a description of images in terms of objects is more
Resultsefficient than is a representation of light intensity in the

pixels of the photoreceptor array (Attneave, 1954).
We use as an experimental test case the H1 neuron inMuch of the work that followed Attneave’s and Bar-
the visual system of the blowfly, which is sensitive tolow’s ideas has focused on the matching of neural per-
horizontal motion across the visual field. H1 respondsformance to global statistical properties of natural sig-
by generating action potentials to motion in its preferrednals. Such a matching is likely to have taken place on
direction and is inhibited by motion in the opposite direc-the long timescales of evolution or development. While
tion. The spike trains of H1 carry information about thethis approach has been successful in some cases (Laugh-
time-dependent horizontal velocity (Strong et al., 1998).lin, 1981; Atick, 1992), it should be kept in mind that
We record from H1 extracellularly to obtain a sequencethe statistical properties of natural signals are highly
of spike times (see Procedures). The high degree ofvariable as we move in the world and as time passes.
stimulus control and the stability of recordings from thisThe mean light level, for example, changes by orders of
neuron have made it a well-studied system for problemsmagnitude as we leave a sunny region and enter a forest.
of real time coding of time-varying signals (Rieke et al.,
1997).* To whom correspondence should be addressed (e-mail: bialek@

research.nj.nec.com). Here, we focus on how the system deals with changes
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Figure 1. Response to Slowly Varying Inputs

The neural response function of H1 for a
slowly varying stimulus ensemble.
(a) Open circles (left-hand axis), firing rate as
a function of time, r(t), estimated by counting
spikes in bins of 10 ms and averaging over
180 repeated presentations of the velocity
stimulus s(t). Solid line (right-hand axis), stim-
ulus velocity.
(b) The neural response r(s) is constructed by
reading the firing rate at each time bin and
plotting it as a function of the stimulus veloc-
ity 30 ms earlier. Open circles, scatter plot of
rate versus velocity; closed circles, average
response function, obtained by discretizing
velocities in bins and averaging the corre-
sponding rates.

in the dynamic range of motion signals, such as might of signals, P[s(t)], used in this experiment. We emphasize
that the firing rate as a function of image velocity isoccur in the transition from straight flight to chasing
measured not by suddenly moving an image that wasbehavior. As a simplified version of this situation, we
previously stationary; rather, the image motion is anconsider the encoding of horizontal velocity signals that
ongoing random process, sometimes slower and some-are drawn from a distribution with zero mean, using the
times faster, such that stimuli always are in their statisti-variance as a control parameter. We first describe the
cal context.phenomenology of adaptive rescaling of input/output

As seen from the scatter plot in Figure 1b, the instanta-relations and the accompanying invariance of statistics
neous relation between rate and velocity is not perfectlyof spike trains. Then, we relate this property to function-
unique; the scatter results from dependencies on otherality, showing that adaptive rescaling enables the sys-
signal properties, such as acceleration. For the slowlytem to maximize information transmission.
varying stimuli considered here, this dependence on
acceleration is negligible, while in other cases, it must

Phenomenology: Adaptive Rescaling
be separated out (see below).

In this section, we describe the phenomenology of adap-
The stimulus in this experiment is changing so slowly

tive rescaling of input/output relations. The experiment
that to keep track of its statistical properties requires

is designed as follows. Several stimulus ensembles are processes on the timescale of many seconds. Although
presented to the fly that differ only in their velocity vari- the encoding of velocity by H1 is characterized by inte-
ance; all other stimulus properties (for example, image gration times that range from 20 to 300 ms, there are
contrast) are held fixed. Once the adaptation processes also adaptation processes with timescales of many sec-
have reached a steady state, we construct the input/ onds, so it is reasonable to ask if “adaptation to statis-
output relations and compare these relations as they tics” exists. To see whether this is the case, we compare
are found with different ensembles. We focus on two the neural response in Figure 1 with that measured in a
types of stimulus dynamics, one with slowly, the other similar stimulus ensemble, but with different standard
with rapidly, varying stimuli. These cases show very deviation. In practice, we use the same long stimulus
similar forms of adaptive rescaling, although the techni- segment and multiply its amplitude by a constant, thus
calities involved in constructing the input/output relation keeping the timescales in the stimulus the same. Figure
are different. 2 shows the time-dependent firing rates in two experi-

Consider first an ensemble of horizontal velocity stim- ments, where the standard deviations were s1 5 2.38/s
uli, s(t), with a time variation much slower than the typical and s2 5 4.68/s. While the velocity stimulus was doubled
time between spikes. The value of the stimulus is then between the two experiments, the response is very simi-
encoded by the local, slowly varying firing rate; this is lar, as observed also for retinal neurons (Meister and
a quasistatic extension of the classic rate code sug- Berry, 1999). This suggests that spikes are not gener-
gested by Adrian (1928). Figure 1a shows the firing rate ated by the same fixed rule in these two cases and that
as a function of time together with the slowly varying the system does keep track of the overall structure of
stimulus s(t). The velocity stimulus in this experiment the stimulus ensemble.
had a correlation time of t < 1 s and a Gaussian distribu- Figure 3a shows the input/output relations of the same
tion with standard deviation of 2.38/s. A 20 s sample neuron in two experiments, obtained as in Figure 1b.
from this ensemble was presented repeatedly to the fly These curves are similar in shape but have different
(180 repeats), and the firing rate r(t) was obtained by scales. Normalizing the stimulus by its standard devia-
averaging over the presentations. The firing rate follows tion, and the rate by the average rate, the two curves
the velocity stimulus s(t), with rectification due to the overlap, as shown in Figure 3b. The input/output relation
direction selectivity of the neuron, and we may define represents average responses; Figure 3c shows the trial-
an instantaneous relation r(s) between stimulus and fir- to-trial variability in the response, represented by the
ing rate. Figure 1b shows this function, which represents standard deviation of the spike rate in 10 ms bins. This
the input/output relation of the neuron when stimuli are variability is small and weakly dependent on the rate.

Moreover, Figure 3d shows that the variability in thedrawn from the “context” provided by the distribution
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Figure 4. Interval Distributions with Slowly Varying Inputs

Cumulative distribution of intervals between successive spikes,
measured in dimensionless units, rav · t, where rav is the mean firing
rate, and t is the interval between spikes. Data are presented fromFigure 2. Rescaled Inputs Elicit the Same Responses
two experiments, where the stimulus distribution has standard devi-Time-dependent firing rates of H1 for two stimulus ensembles, with
ations of s 5 2.38/s (solid line) and s 5 4.68/s (dashed line).standard deviations of s1 5 2.38/s and s2 5 4.68/s. The short segment

of the normalized stimulus s(t), shown by a solid line, is identical in
shape in the two experiments but has different scales. Although this dynamic range of the input ensemble, then the statistical
scale was doubled, the response was almost identical, implying properties of the spike train—not just the time-depen-
adaptation to the range of stimuli in the distribution from which they

dent rates—should be invariant under changes of thisare drawn.
standard deviation. This is a prediction about the struc-
ture of spike trains, independent of any assumptions
about the nature of the code and its elementary symbols.normalized rate (rate relative to the average over the

experiment) also rescales among the two experiments. Figure 4 shows the interspike interval distributions mea-
sured in the two steady states, plotted together in di-The adaptive rescaling of the mean and variance of

the neural response suggests that the system encodes mensionless time units. While the average firing rate
changes from 69 to 75 spikes/s upon doubling the inputstimulus fluctuations in units of the stimulus ensemble

standard deviation. If the system is characterized by standard deviation, the relative fluctuations are the same
to high accuracy over several decades of probability.a nonlinear response function, then adaptive rescaling

means it has an additional degree of freedom, a “stretch Next, we consider an ensemble of horizontal velocity
stimuli, s(t), with a time variation that is fast relative tofactor”: the response function can be stretched or com-

pressed by a constant factor to allow for incoming stimu- the typical neural integration times. In this case, one
cannot expect to find a simple relation between thelus distributions of different widths. The rescaling breaks

down for very large variances, in which the velocities momentary stimulus and the firing rate, since the tempo-
ral width of neural filtering becomes noticeable. Theare too rapid for the cell to follow, and the response

drops dramatically. neural response is then determined by the local value
of the filtered signal, and in general there can be moreIf the neuron encodes its inputs in a normalized fash-

ion, effectively scaling away the standard deviation or than one such filter. One would like to be able to uncover

Figure 3. Signals and Noise

Average response functions and response
variability in the two stimulus ensembles, s1 5

2.38/s (closed circles) and s2 5 4.68/s (open
circles).
(a) Response in physical units, rate (spikes/s)
as a function of stimulus velocity (degrees/s).
(b) Response in dimensionless units. The rate
is normalized by the time-averaged firing rate
and the velocity stimulus by the ensemble
standard deviation.
(c) Variability in rate over trials as a function
of average rate. The standard deviation in the
firing rate was computed over the 180 trials
for each 10 ms time bin and plotted as a
function of the average rate in the bin.
(d) Variability in dimensionless units. The rate
is normalized by the time-averaged rate.
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Figure 5. Velocity and Acceleration Sensi-
tivity

The two dominant stimulus features that con-
trol the response of the H1 neuron (a and b)
and the corresponding nonlinear neural re-
sponse functions (c and d).
(a) The dominant filter is a smoothing filter,
implying that H1 is sensitive to a smoothed
version of the time-dependent velocity.
(b) The second filter is approximately the de-
rivative of the first, implying that H1 is also
sensitive to the smoothed acceleration. The
two filters are normalized to units appropriate
to their interpretation as velocity and acceler-
ation. The firing rate is a nonlinear function
of both stimulus dimensions, s1 and s2, and
the one-dimensional projections of this func-
tion are shown in (c) and (d).

the relevant filters from the data, rather than to postulate r(s1) and r(s2), shown in Figures 5c and 5d. Note that
although the filters defining s1 and s2 were found bythem a priori, and this can indeed be done (see Proce-

dures). By an extension of the reverse correlation linear analysis, the response functions are nonlinear.
Consistent with the interpretation of s1 as the smoothedmethod, we can show that the response of H1 is domi-

nated by the time-dependent signal, as seen through velocity, the function in Figure 5c is qualitatively similar
to that in the slowly varying limit (Figure 1b).two filters. Figures 5a and 5b depict the two filters, and

they correspond to our intuition: the first filter smoothes We performed experiments using rapidly varying stim-
uli with Gaussian statistics; the correlation time was 10the velocity signal over a window of about 50 ms, and

the second filter is approximately the derivative of the ms, and the standard deviation took four values, ranging
from s 5 188/s to s 5 1808/s. Since the two filters arefirst, corresponding to a smoothed acceleration.

Constructing the input/output relation (see Proce- derived from the data in each case, there are generally
some differences in the details of these filters for thedures), we describe the spike rate in H1 as a function

of the two dominant stimulus dimensions, s1 and s2, different stimulus ensembles; however, they always
have similar form and correspond to smoothed velocitycorresponding to velocity and acceleration. For simplic-

ity, we discuss here the two projections of this function and acceleration. Measuring the stimulus component s1

in units of velocity, that is, degrees/s, we find that theseparately; then, we have two input/output relations,

Figure 6. Rescaling of Responses to Dy-
namic Inputs

Adaptive rescaling of the input/output rela-
tions along the two leading dimensions.
(a and c) Response as a function of stimulus
velocity as seen through the first (a) and sec-
ond (c) filter (see Figure 5).
(b and d) Response as a function of stimulus
projections, each normalized by its standard
deviation.
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Figure 7. Interval Distributions with Rapidly Varying Inputs

Cumulative distribution of intervals between successive spikes,
measured in dimensionless units, in two stimulus ensembles. Here,
the stimulus varied rapidly—much faster than the typical interspike
time. Data are presented from two experiments with stimulus stan-
dard deviations of s 5 908/s (solid line) and 1808/s.

Figure 8. Optimizing Information Transmissioninput/output relations are very different, as shown in
Information as a function of the stretch factor l. The input/outputFigure 6a. Normalizing s1 by its standard deviation, and
relation measured in the experiment was artificially stretched or

the rate by its mean, these curves overlap (Figure 6b). contracted by a factor l, simulating the rescaling that occurs during
The adaptive rescaling of the response function seen adaptation. This is illustrated schematically in the three panels on
here is analogous to the effect described previously for top. For each value of l, the stretched input/output relation and the

distribution of stimuli used in the experiment determine a distributionthe slowly varying stimulus. Because of better sampling,
of rates, which in turn determines the information with Equation 2.here we can observe the effect over z3 decades in the
The point l 5 1 corresponds to the stretch factor measured in theresponse. A similar result is found for the input/output
experiment. The maximum at this point indicates that the process

relation in the second dimension, r(s2), although the of adaptation selects a stretch factor that maximizes the information
range of response variation along this dimension is transmission.
smaller. Again, in physical units, the response functions
look rather different (Figure 6c), but in normalized units,
all of the curves from different ensembles overlap (Fig- factor, however, we can test for optimization using only
ure 6d). quantities that are measured in experiments.

Once again, adaptive rescaling predicts that higher
The analysis of information requires identifying the

order statistics of the spike trains are also invariant to
elementary symbols of the code and their distribution

changes in the dynamic range of the inputs. As a test
in any given ensemble; this is straightforward for a rate

of this, Figure 7 shows the interval distribution in two
code, and we present the results here for this case.of the experiments. In dimensionless time units, the two
Identifying the symbols is, however, more subtle for theinterval distributions overlap across several decades of
case of rapidly varying stimuli (Brenner et al., 2000). Aprobability.
simplified analysis can be done in that case which leads
to a similar conclusion. The elementary symbols of aFunctionality: Maximizing Information Transmission
quasistatic rate code are the momentary values of theOnce we know that the neural input/output relation has
firing rate, and we can find the entropy of these symbolsthe flexibility to rescale, a natural question is how the
from the distribution of signals in the experiment andsystem “chooses” the stretch factor in response to the
the response function r(s), shown in Figure 3. We candistribution of stimuli. Intuitively, stretching the input/
also find what this entropy would be if the stretch factoroutput relation allows the system to match its limited
were chosen differently, artificially stretching the re-dynamic range to the dynamic range of the inputs, as
sponse function by a factor of l, and thus simulatingindicated schematically in Figure 8. This intuition is
the input/output relation observed when the system isquantified by searching for coding strategies—in this
adapted to a larger or smaller variance. A similar analysiscase, stretching factors—that maximize the entropy of
can be done for the noise entropy, and in this way wethe distribution of outputs, as suggested by Laughlin
can compare the transmitted information in the experi-(1981). More generally, one expects to find a matching
ment (l 5 1) with the information that would be transmit-that maximizes the information carried by the output
ted with a different choice of stretch factor (l ? 1) underabout the input. This includes, in addition to output sym-
the same stimulus ensemble (see Procedures, Equationbol entropy, the effect of the noise entropy or response
2). Figure 8 shows the information of the rate distributionvariability (de Ruyter van Steveninck et al., 1997; Strong
obtained from this computation as a function of theet al., 1998). While there has been much interest in opti-
stretch factor l. The information exhibits a clear maxi-mization principles for neural coding and computation,
mum at l 5 1, the value chosen by the system. Thesethere are few examples in which we can check directly
results demonstrate unambiguously the implementationthat something is being optimized. Within the space

of input/output relations parameterized by the stretch of a maximum information principle in a sensory system.
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Discussion world would have occurred over evolutionary or devel-
opmental timescales. Although these results have pro-

The idea that efficient signal processing systems must vided considerable inspiration for work on optimal visual
take into account properties of the distribution of incom- coding, there have been few other examples in which
ing signals goes back many years (Wiener, 1949). One such a direct test of optimization itself has been pos-
naturally expects to find this principle implemented in sible.
neural signal processing systems. In particular, the inter- The present work adds to Laughlin’s results in several
mittent structure of natural signals suggests that the ways. First, we are able to characterize input/output
nervous system should adapt its strategies for coding relations under more natural dynamic stimulus condi-
and computation to local changes in the low order statis- tions. Second, we can measure directly the noise in the
tical properties of the sensory environment. Here, we response and hence test for the optimization of informa-
characterized the neural response by a steady-state tion rather than the maximization of entropy. Finally, the
nonlinear input/output function and observed how this results presented here pertain to adaptive processes
function changes among stimulus ensembles with dif- that take place on much shorter timescales, of the order
ferent variances. of seconds or minutes. Such adaptation to the local

The nonlinear input/output relation used here is analo- conditions in the laboratory implies that the system can
gous to the velocity tuning curve widely used in the “learn” a parameter of the signal distribution. This helps
study of motion-sensitive visual neurons—it describes it to optimize its operation locally, providing a flexibility
the probability of spiking (or spike rate) as a function to alter its code as the environment changes.
of the relevant stimulus features. At present, there is An important issue is the timescale of the adaptation
considerable interest in situations in which the tuning process: how long does it take to adapt to a distribution
curve or its spatial analog, the receptive field, is altered with a new variance? With rapidly varying signals, we
by the context in which stimuli are presented. The H1 can estimate this timescale by an experiment in which
neuron provides a clear and understandable example: the variance is switched between two values. We find
the system stretches or compresses its tuning curve the adaptation time to be several seconds, with an asym-
to match the dynamic range of incoming stimuli. This metry between increasing and decreasing variance, as
example suggests that, more generally, the tuning curve seen also in the vertebrate retina (Smirnakis et al., 1997).
can change with the statistical properties of the distribu- Adaptation to the stimulus variance or other statistics
tion from which stimuli are drawn. In this picture, there requires that the nervous system estimate these statis-
is no single tuning curve characterizing the neuron but tics, at least implicitly, and reliable estimation takes time;
rather a set from which the neuron can choose the most it has been suggested that the dynamics of adaptation
suitable tuning curve for each context. are connected with the dynamics of this estimation pro-

The stretching of the input/output relation effectively cess (DeWeese and Zador, 1998). Preliminary experi-
rescales or normalizes the inputs by their standard devi- ments suggest that there may not be one single time-
ations. There is at least an intuitive connection between scale for the adaptation process and that the connection
this phenomenon and the appearance of “normaliza- of these dynamics to the estimation problem may be
tion” in mammalian visual cortex (Carandini and Heeger, more subtle (A. Fairhall et al., personal communication).
1994), and it has been suggested that cortical normaliza- The idea that there are multiple timescales for adapta-
tion helps to provide an efficient code for natural sensory tion is supported by the absence of simple exponential
inputs (Simoncelli and Schwartz, 1999). Here, we have recovery even in the earliest experiments on the adapta-
provided direct evidence that adaptive rescaling is used tion of H1 to constant velocity input (de Ruyter van
to maximize information transmission: among the set of Steveninck et al., 1986) and by the fact that such similar
available response functions, the “most suitable” is the phenomenology is seen for adaptation to the variance of
one for which the information conveyed about the sen-

both fast and slow stimuli. This multiplicity of timescales,
sory stimulus is the highest.

like the rescaling phenomenon itself, may be another
The most important difference between differently

adaptation to the statistics of signals in the naturalscaled input/output functions is the distribution of the
world.output symbols they determine under a given stimulus

distribution. More specifically, the entropy of these sym-
Proceduresbols is sensitive to the stretching and compressing of the

response. For the conditions explored here, the noise
Neural Recording

seems to be much less sensitive to the stretching and A female blowfly was immobilized, and a small hole was cut in the
compression of the response, such that optimizing infor- back of the head, close to the midline on the right side. Through
mation transmission is almost equivalent to maximizing this hole, a tungsten electrode was advanced into the lobula plate.

This area, which is several layers back from the compound eye,the entropy of the output symbols.
includes a group of large motion detector neurons with wide re-The principle of maximizing the entropy of the output
ceptive fields and strong direction selectivity. We recorded spikessymbols to enhance the information capacity of a neuron
extracellularly from one of these, the contralateral H1 neuron (Fran-was discussed by Laughlin (1981) in connection with
ceschini et al., 1989; Hausen and Egelhaaf, 1989). A simple threshold

the responses of large monopolar cells in the fly visual discriminator converted the spikes into spike times digitized at a
system. In Laughlin’s work, the input/output relation was 10 ms resolution.
characterized by measuring peak voltage responses to
contrast steps, and matching was to the distribution of Stimulus Generation
contrasts found in a natural scene. Presumably, this The stimulus was a rigidly moving bar pattern of average intensity,

about 100 mW/(m2 · sr), displayed on a Tektronix 608 high brightnessmatching to global statistical properties of the visual
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display. The bars were oriented vertically, with intensities chosen In the simplest model, the spike rate depends on the velocity
trajectory, as seen through a filter. We can think of the many parame-at random to be one of two values. The fly viewed the display through

a round 80 mm diameter diaphragm showing z30 bars. Frames of ters describing the motion trajectory as being the dimensions of a
vector space, such that each possible stimulus trajectory is a vector.the stimulus pattern were refreshed every 2 ms, and with each new

frame, the pattern was displayed at a new position. This resulted Then, the simplest model is that the firing rate depends only on the
projection of this vector along one single direction in space. Thisin an apparent horizontal motion of the bar pattern that is suitable

for exciting the H1 neuron. The pattern position was defined by a special direction corresponds to the form of the filter that the system
uses for smoothing or averaging. If this simplest model is correct,pseudorandom sequence simulating a motion trajectory drawn from

a probability distribution. The sequence was then multiplied by a then the reverse correlation technique (de Boer and Kuyper, 1968;
Rieke et al., 1997) can find the one special direction in stimulusdifferent constant in each experiment to give a different value of the

standard deviation. Filtering was used to obtain the slowly varying space. More precisely, if we choose input signals from a distribution
corresponding to Gaussian white noise, then the average stimulusstimulus ensemble.
preceding a spike (spike-triggered average stimulus) “points” in the
special direction that describes the smoothing filter. This analysisInformation Estimates and Optimality Test
assumes a priori that only one projection is important; it thereforeThe information that a neuron transmits about the sensory input
cannot provide any evidence for or against this hypothesis. Further-can be computed by finding the entropy of the distribution of output
more, if two projections are important—smoothed versions of veloc-symbols and subtracting the entropy of the noise or, equivalently,
ity and acceleration, for example—the reverse correlation methodthe entropy of the output, given that the input is fixed. In the limit
confounds these different stimulus dimensions.that noise is small (as suggested by the results in Figure 3), the distri-

If spiking is related not only to one but to a few stimulus dimen-bution of output symbols can be found by taking the distribution of
sions, then this reduced dimensionality may be found by character-inputs P(s) and passing it through the input/output relation r(s),
izing the shape of the region in stimulus space that a spike “points

P(r) 5 o
s→r

P(s), (1) to.” A strategy for quantitating this intuition was suggested in earlier
work (de Ruyter van Steveninck and Bialek, 1988). Instead of comput-

where the sum runs over all signals, s, that are mapped into the ing the average stimulus that precedes a spike, we compute the
response r through r(s). To compute the noise entropy, we need covariance matrix of the fluctuations around the average, defined as
more than the standard characterization of response variance (as
in Figures 3c and 3d); we need the entire distribution of the response Cspike (t,t9)
variability. Since the input/output relation r(s) is invertible, it doesn’t

5 ks(tspike 2 t) · s(tspike 2 t9)l 2 ks(tspike 2 t)l · ks(tspike 2 t9)lmatter if we view the distribution of noise as being dependent on
s or on r, and so we can write the transmitted information as

5 Cprior (t, t9) 1 DC(t, t9), (3)
I 5 S[P(r)] 2 o

r
P(r)S[P(n|r)], (2)

where
where S[P] is the entropy of the distribution P, and P(n|r) is the
distribution of the noise given the mean response. Note that the Cprior(t,t9) 5 ks(t 2 t)lks(t 2 t9)l (4)
distribution of signals P(s) is controlled in our experiment, whereas
the response function r(s) is measured, as in Figure 1b, and similarly is the correlation matrix of the visual stimulus itself. If the stimulus
we measure the distribution P(n|r). Since none of these distributions is Gaussian, and if the firing rate is determined by a small number,
have any simple analytic form, the entropies were estimated directly K, of its projections, then the matrix DC(t,t9) has rank K. Moreover,
by binning the experimental data rather than by any analytic approxi- the eigenvectors of this matrix, which are associated with the non-
mation. Our data sets were sufficiently large that we could make zero eigenvalues, correspond to linear combinations of the relevant
small bins and verify that changes in binning had a negligible effect vectors (filters). Identifying these directions provides us with a coor-
on the results. dinate system that spans the set of relevant projections. Note that

We have found that the response function r(s) has the flexibility these directions are not the principal components either of Cprior or
to change the stimulus scale by a stretch factor, l; choosing different of Cspike.
values for l results in a differently scaled response function, and In practice, we collected 120 ms segments of the stimulus wave-
this, in turn, affects the value of the entropies in Equation 2. We form surrounding each spike in the experiment, sampled at the 2
used the empirical forms of r(s) and P(s) and simulated the stretch ms resolution of the experiment. From these samples, we computed
factor l artificially, as illustrated in Figure 8, by the replacement Cspike, and by sampling the distribution of stimuli without reference
r(s)→(ls). The measured response function corresponds to l 5 1; to spiking events, we computed Cprior and then formed the difference
stretching the response by l and using Equations 1 and 2, we can DC. This has units of (stimulus)2, so if we normalize by the stimulus
find the entropy that would result from a different choice of l. In variance, DC is dimensionless. For a typical experiment (s 5 908/s),
Figure 8, the squeezed response functions were extrapolated to a we find that the second largest eigenvalue of DC is 14% of the
constant at the high end of firing rate, and it was checked that a leading one in magnitude, while the third is only 3%, and the rest
linear extrapolation gives similar results in the optimality test. As are ,0.6%. The emergence of only two dominant dimensions from
noted in the text, the variation of I with l is dominated by the entropy the data provides strong evidence that the spiking of H1 is sensitive
of responses, with the noise entropy nearly constant, such that to only two projections of the time-dependent velocity signal.
optimizing information transmission is almost the same as maximiz- As mentioned in the text, we interpret the two leading stimulus
ing the output entropy. projections as smoothed velocity and smoothed acceleration. Ac-

cordingly, we normalize the first filter such that for a constant veloc-
Stimulus Dimensionality Reduction ity, the value of the filtered signal is the same constant. We normalize
Once adaptation processes have reached a steady state, neural the second filter such that for a velocity growing with a constant
responses depend on the history of the stimulus in a finite fixed time acceleration, the filtered signal is the constant acceleration.
window. Previous experience with H1 suggests that, in response to
rapidly varying velocity signals, spiking is correlated with velocity
signals within an integration time of 100 ms or less. In our experi- Constructing the Nonlinear Input/Output Relations

The input/output relation gives the spike rate, or probability of spik-ments, a new velocity is defined every 2 ms, and so in principle, the
firing rate could depend on 50 different parameters describing the ing, as a function of the stimulus value. In the case of a rapidly

varying stimulus, we have seen that there are two stimulus valuesdetails of the motion trajectory within one integration time. Taking
into account the correlation time of 10 ms, the firing could still relevant for spiking in H1, the projections s1 and s2. Defining

P(spike|s1) as the probability of spiking conditional on the first pro-depend on as many as 10 parameters. We would like to identify a
small number of features, or stimulus dimensions, that are most jection of the stimulus having the value s1, it follows from Bayes’s

rule thatrelevant to the neural responses.
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the blowfly visual system. In Natural and Artifical Parallel Computa-P(spike|s1)
P(spike)

5
P(s1|spike)

P(s1)
. (5)

tion, Proceedings of the Fifth NEC Research Symposium, D.L. Waltz,
ed. (Philadelphia: SIAM), pp. 21–41.

Recalling that the spike rate is proportional to this probability, de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle,
R., and Bialek, W. (1997). Reproducibility and variability in neural

r(s1) ~ P(spike|s1), (6) spike trains. Science 275, 1805–1808.

DeWeese, M., and Zador, A. (1998). Asymmetric dynamics in optimal
we find

variance adaptation. Neural Comput. 10, 1179–1202.

Franceschini, N., Riehle, A., and le Nestour, A. (1989). Directionallyr(s1)
rav

5
P(s1|spike)

P(s1)
, (7) selective motion detection by insect neurons. In Facets of Vision,

R.C. Hardie and D.G. Stavenga, eds. (Berlin: Springer-Verlag), pp.
360–390.where rav is the average spike rate. The conditional probability distri-
Hausen, K., and Egelhaaf, M. (1989). Neural mechanisms of visualbution P(s1|spike) describes the stimulus projection, s1, that a spike
course control in insects. In Facets of Vision, R.C. Hardie and D.G.“points to” (de Ruyter van Steveninck and Bialek, 1988). To sample
Stavenga, eds. (Berlin: Springer-Verlag), pp. 391–424.this distribution directly from the data, we look back at the stimulus

every time that we observe a spike and find the value of the stimulus Laughlin, S.B. (1981). A simple coding procedure enhances a neu-
projection on the first filter. The distribution P(s1) is known: it is the ron’s information capacity. Z. Naturforsch. 36c, 910–912.
distribution of stimuli presented in the experiment. Finally, having Maddess, T.M., and Laughlin, S.B. (1985). Adaptation of the motion-
estimated the two distributions, P(s1|spike) and P(s1), we form the sensitive neuron H1 is generated locally and governed by contrast
ratio as in Equation 7 to give the nonlinear input/output relation. frequency. Proc. R. Soc. Lond. B Biol. Sci. 225, 251–275.
The same procedure can be followed in the two-dimensional space

Meister, M., and Berry, M.J. (1999). The neural code of the retina.(s1,s2), resulting in a two-dimensional input/output relation r(s1,s2).
Neuron 22, 435–450.In this work, we considered for simplicity the two projections of this
Nelken, I., Rotman, Y., and Yosef, O.B. (1999). Response of auditory-function, r(s1) and r(s2).
cortex neurons to structural features of natural sounds. Nature 397,
154–156.
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