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Bayesian statistics . . .
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Bayes Best others

consistency X X
convergence rates optimal optimal

model selection ? X(disagreement remains)

use of prior knowledge X ?
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Bayesian model selection for finitely
parameterizable distributions
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Bayesian model selection for finitely
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Bayesian model selection for finitely
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Bayesian model selection for finitely
parameterizable distributions
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PA(α), Pr(A) PB(β), Pr(B)
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Solution

Find the model with maximum posterior probability!

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



5

Solution

Find the model with maximum posterior probability!

For example, for model A:

P (A|X) =
P (X|A)Pr(A)

P (X)

P (X|A) =
∫

dαPA(α) P (X|α) ∼ P (X|αML) ||δαML||

P (X|A)Pr(A) + P (X|B)Pr(B) ≡ Z�
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(See: Bayes factors, Occam factors; Jaynes 1968, 1979)
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Large N expansion

Saddle point (large N) expansion is almost always valid.

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)
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Large N expansion

Saddle point (large N) expansion is almost always valid.

log P (A|X)→
∑

i

log QA(xi|αML)︸ ︷︷ ︸

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)
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Conclusions

• Bayesian inference penalizes for complexity (large K)

• Fight between the goodness of fit and the complexity

selects an optimal model family.

• This is a Bayesian analogue of the MDL principle.

Does this generalize to
infinite–dimensional models?
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Estimating density

Standard setting Fisher–Wald setting
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F (t) =
∫ t

−∞Q(x)dx R[Q] = −
∫ +∞
−∞ log Q(x)dF (x)
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−∞ log Q(x)dF (x)
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∑
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Estimating density

Standard setting Fisher–Wald setting

(solving IE) (minimizing risk)

F (t) =
∫ t

−∞Q(x)dx R[Q] = −
∫ +∞
−∞ log Q(x)dF (x)

1
N

∑
xi

Θ(xi − t) =
∫ t

−∞Q(x)dx Remp[Q] = −
∑

xi
log Q(xi)

Both settings hypersensitive to fluctuations in F (t).
Smoothing is required.
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Finite Infinite

α φ(x) = − log `0Q(x)
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Bayesian learning for K →∞

Finite Infinite

α φ(x) = − log `0Q(x)

P(α) P[Q] ∝ exp
[
− `2η−1

2

∫
dx(∂η

xφ)2︸ ︷︷ ︸
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Bayesian learning for K →∞

Finite Infinite

α φ(x) = − log `0Q(x)

P(α) P[Q] ∝ exp
[
− `2η−1

2

∫
dx(∂η

xφ)2︸ ︷︷ ︸
smoothness penalty

]
︸ ︷︷ ︸

spline prior of order 2η − 1
{A,KA} {`, η(?)} – index continuum of families

Pr(A) Pr(`, η(?))

(See: Bialek, Callan, Strong, 1996)
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Quantum Field Theory analogy
Fix ` and η:

=
〈Q(x)Q(x1) · · ·Q(xN)〉0

〈Q(x1) · · ·Q(xN)〉0︸ ︷︷ ︸
Correlation function in a QFT

defined by P[Q]
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Quantum Field Theory analogy
Fix ` and η:

P [Q|X] =
P (X|Q)P[Q]

P (X)

〈Q〉 =
∫
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∏N

i=1 Q(xi)∫
[dQ]P [Q]
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Explicit form of correlation functions

C. F. ≡
∫

[dQ]P[Q]
N∏

i=1

Q(xi)

=
∫

[dφ]
1
`N
0

e−S[φ] δ

[∫
dx

1
`0

e−φ − 1
]

S[φ]︸︷︷︸
action

=
`2η−1

2

∫
dx(∂η

xφ)2︸ ︷︷ ︸
kinetic term

+
∑

i

φ(xi)︸ ︷︷ ︸
random potential
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Large N approximation for η = 1
ML (classical, saddle point) solution dominates
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Large N approximation for η = 1
ML (classical, saddle point) solution dominates

`∂2
xφcl(x) + N

`0
e−φcl(x) =

∑
j δ(x− xj)

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



16

Large N approximation for η = 1
ML (classical, saddle point) solution dominates

`∂2
xφcl(x) + N

`0
e−φcl(x) =

∑
j δ(x− xj)

changes on scale
δx ∼

√
`/NP (x)���

���
���

@@R

converges to
− log `0P (x)
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Large N approximation for η = 1
ML (classical, saddle point) solution dominates

`∂2
xφcl(x) + N

`0
e−φcl(x) =

∑
j δ(x− xj)

changes on scale
δx ∼

√
`/NP (x)���

���
���

@@R

converges to
− log `0P (x)
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Large N approximation for η = 1, continued
Van Vleck calculation of functional determinant:
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Large N approximation for η = 1, continued
Van Vleck calculation of functional determinant:

C. F. ≈ (1/`0)Ne−Seff [φcl(x)]
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Large N approximation for η = 1, continued
Van Vleck calculation of functional determinant:

C. F. ≈ (1/`0)Ne−Seff [φcl(x)]

Seff[φcl] =
`

2

∫
dx(∂φcl)2︸ ︷︷ ︸ +

∑
φcl(xi)︸ ︷︷ ︸

+
1
2

√
N

``0

∫
dxe−φcl(x)/2︸ ︷︷ ︸
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Large N approximation for η = 1, continued
Van Vleck calculation of functional determinant:

C. F. ≈ (1/`0)Ne−Seff [φcl(x)]

Seff[φcl] =
`

2

∫
dx(∂φcl)2︸ ︷︷ ︸

prior, smoothness

+
∑

φcl(xi)︸ ︷︷ ︸
goodness of fit

+
1
2

√
N

``0

∫
dxe−φcl(x)/2︸ ︷︷ ︸

fluctuations, complexity, error
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How do we measure performance?

For x ∈ [0, L) the universal learning curve is

Λ(N) → 〈DKL(P ||Qcl)〉0{xi} ∼
√

L

`N
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How do we measure performance?

For x ∈ [0, L) the universal learning curve is

Λ(N) → 〈DKL(P ||Qcl)〉0{xi} ∼
√

L

`N

For a different η:

Λ(N) ∼
(

L

`

)1/2η

N 1/2η−1
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Learning curves for fixed `, η = 1
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Learning curves for fixed `, η = 1

Learner’s assumptions P`,η=1[Q]
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Learning curves for fixed `, η = 1

Learner’s assumptions P`,η=1[Q]
Actual target distribution P ′

`a,ηa
[Q]
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Learning curves for fixed `, η = 1

Learner’s assumptions P`,η=1[Q]
Actual target distribution P ′

`a,ηa
[Q]

η = ηa, ` = `a learning typical cases, P = P ′

η = ηa, ` 6= `a marginal outliers of P
η > ηa extremely rough outliers

η < ηa extremely smooth outliers
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Learning curves for fixed `, η = 1

Learner’s assumptions P`,η=1[Q]
Actual target distribution P ′

`a,ηa
[Q]

η = ηa, ` = `a learning typical cases, P = P ′

η = ηa, ` 6= `a marginal outliers of P
η > ηa extremely rough outliers

η < ηa extremely smooth outliers

Note: we must have η > 1/2 for convergence of the integrals.
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Learning typical cases

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Λ

 N

 l=0.05, data and best fit
 l=0.2, data and best fit 
 l=0.4, data and best fit 
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` = 0.4, Λ = (0.54± 0.07)N−0.483±0.014

` = 0.2, Λ = (0.83± 0.08)N−0.493±0.09

` = 0.05, Λ = (1.64± 0.16)N−0.507±0.09
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Learning marginal outliers

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Λ

 N

 l
a
=0.2, data and best fit 

 l
a
=0.4, data and best fit 

 l
a
=0.05, data and best fit

`a = 0.4, Λ = (0.56± 0.08)N−0.477±0.015

`a = 0.05, Λ = (1.90± 0.16)N−0.502±0.008
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Learning at ` = 0.2.
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Learning strong outliers

10
1

10
2

10
3

10
4

10
5

10
−4

10
−2

10
0

Λ

 N

η
a
=1,  l

a
=0.2, data, best fit  

η
a
=2,  l

a
=0.1, data, best fit  

η
a
=0.8,  l

a
=0.1, data, best fit

η
a
=0.6,  l

a
=0.1, data, one run 
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` = 0.1 for ηa = 0 and ` = 0.2 otherwise
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Conclusions for fixed η and `

(slope > −1/2)

0 log N

Λ

best asymptotics
actual and
typical:

actualbest possible
asymptotics (slope = −1/2)

(slope = −1/2)

(slope < −1/2)

too rough

too smooth

actual
(nonlinear)

best possible
asymptotics

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



26

Conclusions for fixed η and `

(slope > −1/2)

0 log N

Λ

best asymptotics
actual and
typical:

actualbest possible
asymptotics (slope = −1/2)

(slope = −1/2)

(slope < −1/2)

too rough

too smooth

actual
(nonlinear)

best possible
asymptotics

• No overfits!

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



26

Conclusions for fixed η and `

(slope > −1/2)

0 log N

Λ

best asymptotics
actual and
typical:

actualbest possible
asymptotics (slope = −1/2)
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asymptotics

• No overfits!

• but suboptimal performance for learning outliers
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Smoothness scale selection

Allow a prior over `, but keep η = 1

C. F. → 〈C. F.〉` =
∫

d` Pr(`) e−Seff [φcl(φ,`)]

Seff[φcl] = smoothing + data︸ ︷︷ ︸
grows with `

+ fluctuations︸ ︷︷ ︸
grows with 1/`

Some `∗ always dominates the C. F. and 〈Q〉!
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Calculations: What is `∗ for ηa and `a?

Averaging over ` and allowing `∗ = `∗(N) deals with
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Calculations: What is `∗ for ηa and `a?

If η = ηa, then `∗ = `a. Otherwise:

0.5 < ηa ≤ 1.5 1.5 < ηa

data > smoothing smoothing > data

`∗ ∼ N (ηa−1)/ηa `∗ ∼ N 1/3

Λ ∼ N 1/2ηa−1 Λ ∼ N−2/3

best possible better, but not

performance best performance

Averaging over ` and allowing `∗ = `∗(N) deals with
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qualitatively wrong smoothness ηa 6= 1!
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Numerics: What is `∗ for ηa and `a?

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



30

Numerics: What is `∗ for ηa and `a?

10
2

10
4

10
6

10
−3

10
−2

10
−1

10
0

 l*

 N

η
a
=1,  l

a
=0.2  

η
a
=0.8,  l

a
=0.1

η
a
=2,  l

a
=0.1  

found                    
predicted                
best possible            

Note: just single runs shown.

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



30

Numerics: What is `∗ for ηa and `a?

10
2

10
4

10
6

10
−3

10
−2

10
−1

10
0

 l*

 N

η
a
=1,  l

a
=0.2  

η
a
=0.8,  l

a
=0.1

η
a
=2,  l

a
=0.1  

found                    
predicted                
best possible            

10
2

10
4

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 D
K

L( 
P

| Q
cl

)

 N

η
a
=0.8,  l

a
=0.1

η
a
=2.0,  l

a
=0.1

 l = 0.2            
 l =  l*       
predicted                
best possible            

Note: just single runs shown.

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



30

Numerics: What is `∗ for ηa and `a?

10
2

10
4

10
6

10
−3

10
−2

10
−1

10
0

 l*

 N

η
a
=1,  l

a
=0.2  

η
a
=0.8,  l

a
=0.1

η
a
=2,  l

a
=0.1  

found                    
predicted                
best possible            

10
2

10
4

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 D
K

L( 
P

| Q
cl

)

 N

η
a
=0.8,  l

a
=0.1

η
a
=2.0,  l

a
=0.1

 l = 0.2            
 l =  l*       
predicted                
best possible            

Note: just single runs shown.

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



31

Approaching model–independend optimal inference!

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



32

Analogies

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



32

Analogies

• choosing `∗ corresponds to selection of a structure

element with dVC =
√

NL/`∗ in Vapnik’s SRM theory

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



32

Analogies

• choosing `∗ corresponds to selection of a structure

element with dVC =
√

NL/`∗ in Vapnik’s SRM theory

• maximizing P over model families (`’s) asymptotically

corresponds to searching for MDL

Ilya Nemenman, CIMS/NYU Seminar, August 26, 2003 back to start



32

Analogies

• choosing `∗ corresponds to selection of a structure

element with dVC =
√

NL/`∗ in Vapnik’s SRM theory

• maximizing P over model families (`’s) asymptotically

corresponds to searching for MDL

• a lot in common with the Gaussian Processes theory;

however normalization constraint is important
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Summary

Bayesian smoothness (model) selection
works for nonparametric spline priors!
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Open questions

• constant factor or constant summand?

• what to do with ηa > 1.5?

• reparameterization invariance

• information theoretic meaningful priors

• higher dimensions

• smooth transition from K = const to K →∞

• which classes of priors are allowed?

There is hope that all of this problems are resolvable in a single

formulation.
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