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Bayes Best others

consistency v v
convergence rates optimal optimal
model selection ? v’ (disagreement remains )
use of prior knowledge v ?
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Bayes Best others
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Bayesian model selection for finitely
parameterizable distributions

P(z) 2% X = {21 2}

_ |
unknown A or B?

e I

" Model family A A " Model family B A
Qa(z|a) Qp(z|B)
dima = K4 dim3 = Kp

\PA(O(), Pr(A) y - Pr(3), Pr(B) )
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Solution

For example, for model A:

P(X|A)Pr(A)
P(X) — P(X|A)Pr(A)+ P(X|B)Pr(B) = Z

P(A|X) =

P(X‘A) — /dOéPA(Oé) P(X‘Ot) ~ P(X’(XML) H(SO(MLH
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(See: Bayes factors, Occam factors; Jaynes 1968, 1979)
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Large /N expansion

Saddle point (large N) expansion is almost always valid.

(See: Schwartz 1978, MacKay 1992, Balasubramanian 1996)
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Conclusions

Bayesian inference penalizes for complexity (large K)

Fight between the goodness of fit and the complexity
selects an optimal model family.

This is a Bayesian analogue of the MDL principle.

Does this generalize to
infinite—dimensional models?
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Estimating density

Standard setting Fisher—Wald setting
(solving IE) (minimizing risk)
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Estimating density

Standard setting Fisher—Wald setting
(solving IE) (minimizing risk)
= /.. Qz Q) = — [ log Q(a)dF ()

NZ%@ ﬂfz—t f Qz Rempi | = —2_;,1og Q(z:)

Both settings hypersensitive to fluctuations in F'(1).
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smoothness penalty
spline prior of order 2n — 1

{A, KA} {é, 77(7)} — index continuum of families

Pr(A) Pr(¢,ne)

(See: Bialek, Callan, Strong, 1996)
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Quantum Field Theory analogy
Fix £ and n:

(Q(z)Q(z1) - - Q(an))°
Q1) -~ Qan))’

A —

Correlation function in a QFT

defined by P[Q]
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Explicit form of correlation functions

N
c.v. = [lPIT[ Q)
=l
B 1 s { 1 4 }
= /[dqb] %Ve ) /dwzge 1
€2 —1
Sl = - [ Aoy Y ol
action Tetic,term_/ 7

random potential
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Large NV approximation for n =1
ML (classical, saddle point) solution dominates
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Large NV approximation for n =1
ML (classical, saddle point) solution dominates

converges to changes on scale

—log@P(x)/ 5x ~ \/L/NP(z)
gagqbcl(x) + %e_@:l(l‘) — Zj 5(3; — gjj)
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Large N approximation for n =1
ML (classical, saddle point) solution dominates

converges to changes on scale

—logl@P(at)/ 5x ~ \/L/NP(z)
£32pa(x) + ge 1 = 3. 5(z — z;)

3.5

Actual distribution
e — Fit for 1e5 samples
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Large N approximation for n = 1, continued
Van Vleck calculation of functional determinant:
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Large N approximation for n = 1, continued
Van Vleck calculation of functional determinant:

C.F. ~ (1/ty)Ne Sentloa(x)
4
Set|Pa] = §/d$(5’¢d)2 + > da(z;)

<~ . T

1 [N

LN [ ba)
™ 5\, / e

W

X
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Large N approximation for n = 1, continued
Van Vleck calculation of functional determinant:

C.F. ~ (1/ty)Ne Sentloa(x)
Seff[¢d] — gfdaj 8§bcl . T Z¢cl($z)

goodness of fit

X

prior, smoothness

_¢cl
+ \/w /daze

fluctuatlons complexity, error
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How do we measure performance?

For x € [0, L) the universal learning curve is

L
A(N) = (Dxr(Pl|Qa)) s,y ~ N

For a different 7:

T, 1/2n
A(N) ~ (_) N1/277—1
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Learning curves for fixed 7, n =1
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Learning curves for fixed 7, n =1

Learner’'s assumptions Proy=1|Q)
Actual target distribution P;  [Q]

n=mn, ¢ =1Y{, learning typical cases, P = P’

N = Na £ # £, marginal outliers of P
N > Nqg extremely rough outliers
N <M extremely smooth outliers

Note: we must have 17 > 1/2 for convergence of the integra

|s.
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Learning typical cases

0.05, data and best fit
0.2, data and best fit
0.

4 data and best fit

10 10 10 10 10
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(=04, A=(0.5440.07)N0483+0.014
(=02 A=(0.8340.08)N0493+0.09
¢ =0.05, A= (1.6440.16)N0-507+0.09
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Learning marginal outliers

—,— Ia=0.2, data and best fit
Ia=0.4, data and best fit
Ia:0.05, data and best fit

10 ° - - : i

10 10 1R| 10 10
lo =04, A=(0.56+0.08)N0-477=0.015
¢, =0.05, A= (1_90 + 0.16)]\;—0.50210.008
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Learning at £ = 0.2.
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Learning strong outliers

1

=0. , ,

=0.1, data, best fit
na:0.8, Ia:O.l, data, best fit
r]a:O.6, Ia:O.l, data, one run
r]a:O, Ia:0.12, data, one run

' a
—— r]a_2’ Ia

10 10 10° 10" 10°

N

Ne = 2, £g = 0.1, A = (0.40 £ 0.05)]\7—0.49310.013
Ne = 0.8, {, =0.1, A= (1.06=+ O.OS)N—O.355iO.008
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¢ =0.1 for n, =0 and £ = 0.2 otherwise
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Conclusions for fixed n and ¢

A
< /too rough actual

(nonlinear)

best possible
asymptotics

/ (slope > -1/2)

~,,
4
Sao
~
...
~
~
~
~
~
~
~
S
~
~
~
~
~
~

typical:

too smooth L\r/ actual and
best asymptotics
(slope = -1/2)

I
best possible actual log N

asymptotics (slope = -1/2)
(slope < -1/2)
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Conclusions for fixed n and /

<

A

too rough actual
¥ )
(nonlinear)

best possible
asymptotics

/ (slope > -1/2)

~
"
~
~
-
~
~
e
~
“a
~
~
~
~
e
~
S
-
“a
~,
~

O .....
/ typical:
too smooth Cj)(/ actual and
best asymptotics
(slope = -1/2)
T L
best possible actual log N
asymptotics (slope = -1/2)

(slope < -1/2)

but suboptimal performance for learning outliers
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Allow a prior over £, but keep n =1
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Smoothness scale selection
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Calculations: What is ¢/* for n, and ¢,?
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If n = n,, then . Otherwise:

0.5 <n, < 1.5 1.5 < 1,
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Calculations: What is ¢* for n, and /¢,?

If n = n,, then . Otherwise:

0.0 <ne < 1.5 1.5 < n,
data > smoothing | smoothing > data
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If n = n,, then . Otherwise:

0.5 <n, < 1.5 1.5 < n,

data > smoothing | smoothing > data
V* ~ N(na_l)/na V* ~ N1/3
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Calculations: What is ¢* for n, and /¢,?

If n = n,, then . Otherwise:

0.5 <n, < 1.5 1.5 < n,

data > smoothing | smoothing > data
V* ~ N(na_l)/na V* ~ N1/3

A ~ N1/20a—1 A~ N-2/3
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Calculations: What is ¢* for n, and /¢,?

If n = n,, then . Otherwise:
0.0 <n, < 1.9 1.5 < n,
data > smoothing | smoothing > data
0 ~ N (a=1)/na 0* ~ N1/3
A ~ NL/2na—1 A~ N2/3
best possible better, but not
performance best performance
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qualitatively wrong smoothness n, # 1!
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Numerics: What is ¢* for n, and /,?
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Numerics: What is ¢* for n, and /,?
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Note: just single runs shown.
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Numerics: What is ¢* for n, and /,?
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Numerics: What is ¢* for n, and /,?
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Approaching model-independend optimal inference!
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Analogies
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Analogies

choosing £* corresponds to selection of a structure
element with dyc = \/NL/K* in Vapnik's SRM theory
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Analogies
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element with dyc = \/NL/K* in Vapnik's SRM theory

maximizing P over model families (¢'s) asymptotically
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Analogies

choosing £* corresponds to selection of a structure
element with dyc = \/NL/K* in Vapnik's SRM theory

maximizing P over model families (¢'s) asymptotically
corresponds to searching for MDL

a lot in common with the Gaussian Processes theory:;
however normalization constraint is important
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Summary

Bayesian smoothness (model) selection
works for nonparametric spline priors!
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Open questions
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Open questions

constant factor or constant summand?
what to do with n, > 1.57
reparameterization invariance
information theoretic meaningful priors
higher dimensions

smooth transition from K = const to X — o0
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Open questions

constant factor or constant summand?

what to do with n, > 1.57

reparameterization invariance

information theoretic meaningful priors

higher dimensions

smooth transition from K = const to K — oc

which classes of priors are allowed?
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Open questions

constant factor or constant summand?

what to do with n, > 1.57

reparameterization invariance

information theoretic meaningful priors

higher dimensions

smooth transition from K = const to K — oo

which classes of priors are allowed?

There is hope that all of this problems are resolvable in a single

formulation.
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