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1.  MATERIALS AND METHODS 
 
1.1  Cell culture 
 Wildtype and A20-/- 3T3-immortalized mouse embryonic fibroblasts (kind gift from A. Hoffmann, Univ. 
of California, San Diego) were maintained in low glucose Dulbecco’s modified Eagle’s medium (Invitrogen) 
supplemented with 10% calf bovine serum (American Type Culture Collection) and 10 U/mL each of penicillin 
and streptomycin (Invitrogen).  Cells were seeded at a density of approximately 150 cells/mm2 onto 15mm 
diameter circular coverslips (Fisher Scientific) coated with 0.1% gelatin (Sigma) placed in a 35mm diameter 
dish, then serum starved in medium with reduced serum concentration (0.1%) overnight before experimentation. 
 
 
1.2  Immunocytochemistry 
 After exposure to murine TNF (Roche) or murine PDGF-BB (Sigma) at the specified concentrations and 
duration, the cells were washed 3 times with ice-cold phosphate buffered saline (PBS, Invitrogen), and fixed in 
4% paraformaldehyde (Electron Microscopy Sciences) for 20 minutes.  The cells were then permeabilized in 
0.1% triton X-100 (Sigma) for 5 minutes, and blocked in 10% goat serum (Invitrogen) for 60 minutes.  Next, 
the cells were incubated in primary antibody solution consisting of 1:100 rabbit anti-p65 antibody (Santa Cruz), 
1:100 mouse anti-phospho-ATF-2 antibody (Santa Cruz), and 2 µg/mL Hoechst-33258 (Sigma) for 60 minutes.  
Finally, the cells were incubated in secondary antibody solution consisting of 1:200 Alexa Fluor 488-conjugated 
goat anti-rabbit and 1:200 Alexa Fluor 594-conjugated goat anti-mouse antibodies (Invitrogen) for 60 minutes.  
All solutions were made in PBS, and cells were washed with PBS in between each step.  To minimize 
experimentally-induced variability and to enable quantitative comparisons across conditions, all concentrations 
of TNF and all cell lines were assayed at the same time using common reagents.  Finally, the stained coverslips 
were mounted on glass microscope slides and imaged on an Axiovert 200M inverted epifluorescence 
microscope (Zeiss) equipped with Slidebook 4.2 (Intelligent Imaging Innovations).  On average, 350 cells were 
imaged per experimental condition. 
 In Fig. S4, cells were exposed to the indicated inhibitors (kind gift from J. Zhang, Johns Hopkins Univ.) 
beginning 1 hour before the addition of TNF.  In Fig. M3, immortalized human umbilical vein endothelial cells 
(kind gift from the late J. Folkman, Harvard) expressing GFP (42), were stained with 1:100 mouse anti-GFP 
antibody (Roche) paired with 1:200 Alexa Fluor 594-conjugated goat anti-mouse antibodies. 
 
 
1.3  NF-κB reporter gene 
 Wildtype 3T3 mouse embryonic fibroblasts were infected with lentiviruses containing a gene for Turbo 
GFP whose promoter was under the control of NF-κB (Cignal lenti NF-κB reporter, from SA Biosciences).  
Lentiviral transfection was performed according to the manufacturer’s recommendation using a multiplicity of 
infection of ~200 in the presence of 1 µg/mL polybrene (Sigma), followed by selection in 6 µg/mL puromycin 
(Sigma).  After two rounds of infection, cells were clonally seeded in a 48-well plate and tested for response to 
TNF.  Cells that displayed high levels of GFP fluorescence were individually selected and cultured to create 
clonal lines of cells.  GFP expression was monitored in live cells on a Zeiss Axiovert 200M microscope, or 
measured in cells that were fixed by exposure to 4% paraformaldehyde for 20 minutes.  Reporter gene copy 
number was determined by quantitative polymerase chain reaction (∆∆Ct method) to amplify Turbo GFP from 
purified genomic DNA and benchmarked against endogenous genes of known copy number (Charles River 
Laboratory custom service, Troy, NY). 
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1.4  ERK2 translocation 
 Nuclear translocation of ERK2 was measured using ERK2-YFP clone C7, which is a H1299 human 
non-small cell lung cancer cell line clone expressing YFP-tagged ERK2 and mCherry-tagged CBX5 
(chromobox 5), a protein with persistent nuclear localization and unconnected to ERK2 signaling (43) 
(generous gift from Drs. C. Cohen-Saidon and U. Alon, Weizmann Institute).  The cell line was maintained as 
described in (23).  Prior to experimentation, the cells were seeded into a 4-well LabTek optical chamber coated 
with fibronectin (Sigma) and allowed to attach in serum starved conditions for 5 hours.  Within the LabTek well, 
the cells were maintained in transparent medium consisting of a riboflavin- and phenol red-free formulation of 
the RPMI medium (Athena Enzyme Systems custom medium) supplemented with 10 U/mL each of penicillin 
and streptomycin.  ERK2 and CBX5 expression was monitored in live cells on a Zeiss Axiovert 200M 
microscope.  Measurements were made for 5 minutes to establish a baseline (zero concentration) and for 40 
minutes following the addition of EGF (Peprotech) in transparent medium to the well via syringe pump.  
Information theoretic calculations were performed for individual cell responses at 10 minutes EGF exposure, 
the time at which ERK2 nuclear translocation peaked. 
 
 
1.5  Image and data analysis 
 Image processing, data analysis, and information theoretic calculations were performed using Matlab 
R2006a (MathWorks).  Background correction, nucleus segmentation, and quantification of nuclear 
concentrations of NF-κB and phospho-ATF-2 were performed as described previously (16).  Programs are 
available upon request. 
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2.  NUMERICAL COMPUTATIONS OF MUTUAL INFORMATION 
 
2.1  Bias correction and error estimate 
 Mutual information between two variables can be computed from discretized data using the standard 
formula (9): 
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where H is the entropy functional.  The marginal distribution of the response is given by 
 
 ( ) ( ) ( | )j i j i

i
P R r P S s P R r S s= = = = =∑ , (2.1.2) 

 
where the values of R (i.e., rj) are discretized into NR bins and the values of S (i.e. Si) are discretized into NS bins.  
In the case that the response R is, for example, a two-dimensional vector then each element of R is discretized 
into NR bins for 2

RN  bins in total.  The formula for mutual information, written in the form shown in Eq. 2.1.1, 
highlights the dependence on P(R|S) which is given by the single cell response data, and P(S) which is chosen 
or assumed. 
 
 In the limit of infinitely small bins but infinitely many datapoints per bin, the discrete mutual 
information computed using Eq. 2.1.1 converges to the true continuous value.  However, given finite (limited) 
data, direct estimates of mutual information using Eq. 2.1.1 are biased (44).  Bias likewise contaminates 
estimates of the maximum mutual information, also known as the channel capacity (9).  Since we are able to 
obtain large samples, typically consisting of ~350 single cell responses per signal value, we are far away from 
the severely undersampled regime (40, 45), and the bias resulting from finite sample size can be corrected by 
adapting universal estimators described in (41, 46). 
 
 In particular, we consider the series expansion of the mutual information in terms of inverse powers of 
sample size: 
 

 1 2
biased 2

a aI I
N N∞= + + + , (2.1.3) 

 
where Ibiased is the biased estimate of the mutual information, I∞ is the unbiased estimate of the mutual 
information, N is the total number of samples, and the ai are coefficients that depend on underlying distribution 
of the signal and the response.  The quantity I∞, which we wish to estimate, may be the value of the mutual 
information under a specific distribution of the signal, or the maximum value under all possible distributions of 
the signal.  When N is sufficiently large, as in our case, terms of second order or larger are negligible in 
comparison to the first order term ~1/N, and the estimated mutual information is a linear function of inverse 
sample size. 
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 We used jackknife sampling to estimate this linear function.  In particular, we sampled fractions of the 
data, ranging from ~60% to 100%, without replacement and computed the discretized mutual information, Ibiased.  
Notably, when computing the discretized mutual information, the boundaries of the bins were chosen so that 
each bin of the marginal distribution P(R) has approximately equal density (under the assumption that P(S) is 
uniformly distributed), as in (47).  Then, we plotted the mutual information with respect to inverse sample size, 
and extrapolated to infinite sample size, i.e. 1/N → 0, to obtain I∞ (Fig. M1A). 
 

 
 
 The extrapolation procedure was performed for different numbers of response bins.  When the number 
of bins is small, I∞ is an underestimate because differential responses are not distinguished by the coarse 
discretization.  For a moderate number of bins, I∞ is constant, indicating that the unbiased mutual information is 
captured.  The range of bin numbers for which this occurs is also known as the “plateau” region (46).  For a 
large number of bins, I∞ increases because the sample size is not large enough to support very fine discretization, 
and the linear approximation breaks down.  Other popular approaches for selection of the appropriate 
coarseness of the data binning (47, 48) are conceptually very similar. 
 
 When computing the channel capacity (see Section 2.2) for a single response (scalar), e.g. the maximum 
value of I(NF-κB;TNF), we observed that the plateau region extended to at least 50 bins, a result of the large 
sample size (~350 cells per TNF concentration).  The mutual information and its error was estimated as the 
average and standard deviation, respectively, of the values of I∞ obtained from 10 to 50 bins, inclusive.  When 
computing the maximum channel capacity for two responses (vector), e.g. the maximum value of I(NF-
κB,ATF-2;TNF), the plateau region was typically between 4 and 15 bins (Fig. M1B).  The plateau region was 
smaller due to the larger ratio between response space and the number of datapoints for two responses which 
scales as the square of the number of bins, compared to that for a single response which scales linearly in the 
number of bins.  Furthermore, for the channel capacity of either single or multiple responses, for some bin 
numbers the value of I∞ computed on data randomized by shuffling pairings of signals and responses can be 
negative, though not statistically significantly different than zero (49).  Empirically, we found that these bin 
numbers reliably indicated the plateau region.  The value and error of the mutual information was likewise 

Figure M1: Determination of unbiased mutual information.  A, Linear extrapolation to infinite sample size to determine I∞ 
(see Eq. 2.1.3).  B, I∞ plateaus for those numbers of bins for which I∞ computed for randomized data is slightly, but not 
statistically significantly, negative.  The estimate and error for the unbiased mutual information are taken as the mean and 
standard deviation, respectively, of the I∞ values within the plateau.  The data shown in this figure illustrate the computation of 
I(NF-κB;ATF-2|TNF=50ng/mL) at the 30 min. timepoint. 
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taken as the average and standard deviation, respectively, of the values of I∞ computed on the non-randomized 
data in the plateau (Fig. M1B). 
 
 
2.2  Computing the channel capacity given P(R|S) 
 In this section, we describe the methods used to determine the channel capacity of the signaling unit, 
C(R;S), that is, the maximum value of I(R;S) under all possible input distributions P(S), given the experimental 
conditional response data P(R|S).  Formally, this can be stated as an optimization problem: 
 
 

( )
( ; ) max ( ; )

P S
C R S I R S=  such that ( ) 1,

( ) 0.

i
i

i

P S

P S

⎧ =⎪
⎨
⎪ ≥⎩

∑  (2.2.1) 

 
The constraints ensure that the probability associated with each signal bin is between 0 and 1 inclusive, and the 
total probability sums to 1.  Importantly, since I(R;S) is a concave function of P(S), and the constraints are also 
concave (linear) functions of P(S), there is a single global maximum for I(R;S) (9). 
 
 The concavity of I(R;S) enables easy identification of its maximum value and the corresponding P(S) by 
a variety of algorithms.  One fast and simple method to maximize the mutual information is the well-known 
Blahut-Arimoto algorithm (9), which by iteratively optimizing the mutual information over the marginal and 
conditional distributions of the input, converges on the input distribution that yields the maximum mutual 
information.  The solution identified by the algorithm was checked using the Karush-Kuhn-Tucker conditions, 
which for this problem were both necessary and sufficient conditions satisfied by the optimal solution (50).  The 
Blahut-Arimoto algorithm can further be run on jackknife samples as described above in Sec. 2.1, in order to 
obtain unbiased estimates of the maximum mutual information. 
 
 It is well-known that the P(S) that yields the global maximum may be highly spiky or discontinuous, 
which might not represent a physically reasonable distribution.  Hence, it is prudent to consider the maximum 
information that can be achieved when P(S) is constrained to be “smooth” in some sense.  Smoothness 
constraints are cumbersome to implement and not guaranteed to yield optimal solutions using a modified 
Blahut-Arimoto algorithm (51), but these difficulties can be surmounted using linear constraints and a gradient 
ascent method.  In particular, in order to enforce additional constraints on P(S), we utilized Matlab’s fmincon 
function.  (Technically, fmincon minimizes a function, but by using –I(R;S) as the objective function, the 
maximum value of I(R;S) is identified.)  In the absence of additional constraints, fmincon and the Blahut-
Arimoto algorithm yielded identical results. 
 
 We note that signals that are produced from multiple sources, as in the case of inflammatory signaling, 
can exhibit a unimodal (normal-like) shape, or they can be bimodal (e.g. inflammation that is either absent or 
present), with each of the modes having a similar shape for the same reason.  This suggests using a definition of 
“smoothness” that is somewhat different from traditional constraints on derivatives of the distribution (see, e.g., 
(52)).  Namely, we insist that the distribution P(S) that attains the channel capacity is either unimodal or 
bimodal. 
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 First, we explored the information capacity that could be obtained if P(S) was constrained to be a 
unimodal distribution (see Fig. S1).  The corresponding optimization problem was written as: 
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for 1 ≤ k ≤ NS.  The additional constraints ensured that the single peak of the input distribution is at P(Sk) (Fig. 
M2A).  The maximization was then performed for each of the NS possible positions of the peak.  For the TNF 
dose response experiments, the value of NS was 13. 
 
 Second, we explored the mutual information that could be obtained if P(S) was constrained to be a 
bimodal distribution (see Fig. S1).  The corresponding optimization problem was: 
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Figure M2: Schematic representation of unimodal and bimodal constraints.  A, Unimodal probability distribution for the 
signal where the peak occurs at signal value Sk.  B, Bimodal probability distribution for the signal where the peaks occur at Sk and 
Sm, with a local minimum at Sl.  The corresponding heatmap representations are shown for comparison to Fig. S1. 
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for 1 ≤ k < l < m ≤ NS.  These constraints ensured that the two peaks of the input distributions occur at P(Sk) and 
P(Sm) and the intervening local minimum occurred at P(Sl) (Fig. M2B).  The maximization was then performed 

for the ( )3
SN  possibilities for the locations of the two peaks and the local minimum.  For the TNF dose response 

experiments, all ( ) ( )13
33

286SN = =  possibilities were tested. 

 
 For both the unimodal and bimodal constrained optimizations, we note that the added constraints are 
concave (linear) functions of P(Si).  As a result, the Karush-Kuhn-Tucker conditions again guarantee existence 
of a unique global optimum and enable it to be verified (50). 
 
 To enable a fair comparison of the maximum mutual information under no, unimodal, or bimodal 
constraints (as shown in Fig. S1), we performed all calculations using NR = 10 response bins without performing 
bias corrections.  Due to the large sample size, we estimate that the bias is less than 0.017 bits (using the 
formulas of (53)), and thus does not affect the conclusions drawn.  In all other figures and text, the maximum 
mutual information is reported without unimodal or bimodal constraints and is corrected for bias using the 
method described above in Sec. 2.1. 
 
 
2.3  Computing I(R1;R2|S) given P(R1,R2|S) 
 In this section, we describe the method used to compute, directly from the data, the mutual information 
between two responses resulting from a specific signal value.  The corresponding formula is: 
 

 
1 2

1 2
1 2 1 2 2

, 1 2

( , | )( ; | ) ( , | ) log
( | ) ( | )R R

P R R SI R R S P R R S
P R S P R S

= ∑ . (2.3.1) 

 
Notably, in comparison to the procedures used to maximize mutual information (Sec. 2.2), computing I(R1;R2|S) 
can be performed solely with the conditional response data P(R1,R2|S) and does not require any assumptions 
about other distributions.  In particular, one does not need to assume the distribution P(S).  Nonetheless, bias 
correction must still be performed to yield reliable estimates of the mutual information. 
 
 The bias correction is performed similarly to the method described above (Sec. 2.1).  The data is binned 
into NR bins along the first response R1 and NR bins along the second response R2, with the bin boundaries 
chosen so that the marginal distributions are equally partitioned into the bins.  Jackknife samples are used to 
extrapolate to the mutual information I∞ that would be obtained with infinite sample size, as 1/N → 0.  Then I∞ 
is plotted versus the number of bins, NR, and the plateau region is identified as the bin numbers for which I∞ 
computed on randomized data is slightly negative.  The unbiased estimate of the mutual information and its 
error are taken as the average and standard deviation of I∞ values within the plateau (as in Fig. M1B). 
 
 
2.4  Computing I(R1,R2;S) assuming conditionally independent responses given the signal 
 The key assumption of the bush network model (see Sec. 5.2) is that the responses are conditionally 
independent given the signal.  For the case of two responses, R1 and R2, this implies that 
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 bush 1 2 1 2( , | ) ( | ) ( | )P R R S P R S P R S= . (2.4.1) 
 
The joint conditional distribution, constructed in this way from the marginals, can be used to estimate the 
channel capacity that could be obtained if the responses were the result of signaling via a bush network.  The 
computation is performed by maximizing the mutual information yielded by Pbush(R1,R2|S) over all possible P(S) 
using the algorithms described in Sec. 2.2 to yield unbiased estimates of the maximum mutual information. 
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3.  EFFECT OF EXPERIMENTAL NOISE ON MUTUAL INFORMATION 
 
 In this section, we determine the amount of observed cell-to-cell variability that can be ascribed to true 
biological variability versus experimental noise, in order to evaluate the degree to which estimates of mutual 
information are affected by experimental noise.  With respect to the experimental noise, we are primarily 
concerned with the accuracy with which concentrations of cellular species, particularly nuclear NF-κB, can be 
determined by immunofluorescence.  Analogous to the method used to separate total noise into extrinsic and 
intrinsic noise (5), the total observed variability can be partitioned into true biological variability and 
immunochemical noise by simultaneous co-measurement of the species of interest. 
 

 
 
 First, we determined the level of experimental noise that can be generally ascribed to 
immunofluorescence.  Using cells stably expressing GFP, we measured nuclear concentrations of GFP by direct 
measurement of GFP fluorescence and by immunofluorescence using GFP-specific antibodies (see Sec. 1.2 for 
detailed methods).  We observed an excellent linear correspondence between the direct and stained GFP 
measurements, with a correlation coefficient of ρ = 0.940 (Fig. M3).  Now, if we take the direct GFP 
measurement to be (proportional to) the true GFP concentration, then it is reasonable to define the experimental 
noise as the variance of the stained GFP measurement given the true value determined by direct fluorescence.  
Likewise, the total variability is given by the variance of the stained GFP measurement.  Then, under Gaussian 
assumptions (cf. Eq. 5.1.4), the fraction of the total variability resulting from experimental noise is 
 

 
2

2var(stained GFP | true GFP) (1 ) var(stained GFP) 1
var(stained GFP) var(stained GFP)

ρ ρ−
= = − . (3.1) 

 
Thus, about 12% (1 – 0.9402 = 0.116) of the total observed variance resulted from immunofluorescence noise.  
In reality, the direct GFP fluorescence is a slightly noisy (due to shot noise, etc.) measurement of the true GFP 
concentration.  This extra source of noise implies that 12% is a slight over-estimate of the actual portion of the 
total variance that results from immunofluorescence. 
 

Figure M3: Experimental variability associated with 
immunofluorescence.  Cells stably expressing GFP in the 
nucleus were fixed and immunostained for GFP.  In each 
cell, nuclear GFP concentration was determined by 
measuring direct fluorescence from GFP and by GFP 
immunofluorescence.  The graph shows the GFP 
measurements obtained for 1,096 cells.  There is a tight 
linear relationship between direct fluorescence (proportional 
to GFP concentration) and immunofluorescence, with a 
correlation coefficient of 0.940. 
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 To confirm this result specifically for immunofluorescence measurements of NF-κB, we performed 
another experiment in which the p65 subunit of NF-κB was simultaneously stained by two distinct antibodies.  
The antibodies were chosen to be specific to different termini of p65 to minimize interference with one another.  
We confirmed that dual staining did not substantially affect the measurements yielded by the individual 
antibodies (Fig. M4A).  We found that, across a wide range of TNF concentrations, there was a linear 
correspondence between the two stained NF-κB measurements with a correlation coefficient of ρ ≈ 0.90 (Fig. 
M4B).  Since both stained measurements are affected by experimental noise, neither measurement should be 
taken to represent the true NF-κB concentration, and Eq. 3.1 does not apply.  Instead, we note that, under 
Gaussian assumptions, the correlation between the joint measurements is the product of the correlations 
between each measurement and the true value: 
 
 

1 2 1 2

2 2 2
, | , | , |R R S C R S C R Sρ ρ ρ= , (3.2) 

 
where R1 and R2 are the measured levels of NF-κB and C is the actual level of NF-κB.  (This expression can be 
obtained, for example, by considering a Gaussian tree network in which the trunk represents biological 

Figure M4: Experimental variability associated with NF-κB immunofluorescence.  A, Wildtype fibroblasts exposed to 8.0 
ng/mL TNF for 30 minutes were stained with two different antibodies specific to NF-κB applied individually (single stain) or 
simultaneously (dual stain).  The average NF-κB immunofluorescence was similar for single and dual staining, indicating 
minimal interference between the two antibodies.  B, Wildtype fibroblasts were exposed to the indicated concentrations of TNF 
for 30 minutes, then dual stained for NF-κB.  At all concentrations, there was a tight linear relationship between the immuno-
fluorescence of the two antibodies with a correlation coefficient of ~0.90.  C, Variability in the dual staining experiment can be 
analyzed as a tree network.  The trunk of the network transduces TNF dose into the true NF-κB concentration, and the branches 
transduce the true NF-κB concentration into the concentration measured by the antibodies (Ab1, Ab2) by immunofluorescence.  
The variability associated with the trunk represents the true biological variability, and the variability associated with the 
branches represents experimental noise. 
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variability and the branches represent experimental noise (Fig. M4C).)  Since, in this experiment, the 
measurement noises both result from immunofluorescence, we expect that their contributions to the total 
variability are similar, i.e. 

1 2

2 2
, | , |C R S C R Sρ ρ≈ .  Under this assumption, then, the fraction of the observed variance 

that can be ascribed to measurement noise is 
 

 1

1 2

2

, |
1

1
var( | )

C R
R R SR S

σ
ρ→ ≈ − . (3.3) 

 
In our experiment, this shows that ~10% (1 – 0.90) of the total observed variance is due to experimental noise 
and the rest is true biological variability.  This result is consistent with the conservative estimate of 12% 
obtained from the GFP experiment above. 
 
 Next, we estimate the effect of this level of experimental noise on the measured amount of mutual 
information.  We note that, for Gaussian communication channels, the mutual information is determined by the 
signal-to-noise ratio, φ, as in Eq. 6.1.1: 
 

 
2 2

2 2 2
2 2 2

1( ; ) log 1     2 1
2

IS S

S R S R

I R S m mσ σφ
σ σ→ →

⎛ ⎞
= + ⇒ ≡ = −⎜ ⎟

⎝ ⎠
. (3.4) 

 
For the TNF-NF-κB pathway, whose maximum mutual information is I(NF-κB;TNF) = 0.916 bits, the 
corresponding signal-to-noise ratio is φ = 2.56.  The above experiments show that approximately 10% of the 
denominator of φ is due to experimental noise.  Thus, continuing the Gaussian assumption, the true value could 
be as high as 2.56/(1 – 0.90) = 2.84.  Plugging into Eq. 3.4, this implies that the true maximum mutual 
information may be 0.971 bits.  Stated another way, the mutual information between the true p65 concentration 
and the antibody measurement is not smaller than 1

22~ log (1 0.90) 1.66− = bits, which is substantially larger than 
the measured channel capacity of about 0.92 bits between the TNF signal and the antibody measurement.  
Hence, the measurement itself is not a bottleneck that substantially decreases the apparent value of the mutual 
information, whether the TNF-NF-κB relation is Gaussian or not. 
 
 Finally, we note that in the TNF-NF-κB pathway, accounting for experimental noise as an additive 
Gaussian process led to correcting the channel capacity by about 0.055 bits.  For other signal-response pairs (e.g. 
Table S1) in which the initial estimate for mutual information is lower than that of the TNF-NF-κB pathway, 
accounting for experimental noise will lead to a smaller increase due to the monotonic relationship between 
mutual information and φ.  Thus, in this study, 0.055 bits is the largest and most conservative value for the 
extent to which mutual information is underestimated due to experimental noise.
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4.  INFORMATION CAPTURED BY MULTIPLE VERSUS INDIVIDUAL RESPONSES 
 
 In this section, we show that the responses of multiple communication channels can obtain more 
information about a signal than the response of the individual channels.  In particular, we explore the values for 
the mutual information resulting from two responses, I(R1,R2;S), can attain relative to the mutual information 
resulting from the individual responses, I(R1;S) and I(R2;S).  First, we prove that I(R1,R2;S) is at least as large as 
the greater of I(R1;S) and I(R2;S).  Then, we prove that if the responses result from independent signaling 
processes, then I(R1,R2;S) is necessarily larger than I(R1;S) and I(R2;S).  Finally, we show that I(R1,R2;S) has no 
upper bound and can take on large values, for example, if the noise in the two responses is negatively correlated.  
The reader should consider exploring (54) for discussion of relations among mutual informations in more 
general multivariate dependencies models. 
 
 
4.1  The lower bound of I(R1,R2;S) is the greater of I(R1;S) and I(R2;S) 
 The chain rule for mutual information gives the following relation: 
 
 1 2 1 2 1( , ; ) ( ; ) ( ; | )I R R S I R S I R S R= + . (4.1.1) 
 
Since mutual information is always non-negative, 2 1( ; | ) 0I R S R ≥ .  Thus 1 2 1( , ; ) ( ; )I R R S I R S≥ .  By instead 
applying the chain rule conditioned on R2, we can likewise show that 1 2 2( , ; ) ( ; )I R R S I R S≥ .  The combination 
of these inequalities demonstrates that a lower bound for the information that two responses provide about a 
signal is 
 
 1 2 1 2( , ; ) max[ ( ; ), ( ; )]I R R S I R S I R S≥ . (4.1.2) 
 
This lower bound is achieved when either I(R2;S|R1) or I(R1;S|R2) equals zero, that is when one response is 
conditionally independent of the signal given the other response, implying no improvement in information using 
the two responses together.  In other words, the information provided by the two responses together is not 
smaller than the information provided by the more informative individual response. 
 Notably, the proof of this lower bound does not depend on whether R1 or R2 are scalars or vectors, a fact 
that will be utilized in Section 4.2. 
 
 
4.2  I(R1,R2;S) is strictly greater than the lower bound if the responses are conditionally independent 
 In this section, we consider the case in which responses R1 and R2 are conditionally independent given 
the signal, corresponding to the scenario in which the responses are generated by signaling processes that do not 
interact, other than sharing a common signal.  Below, we prove that conditional independence necessarily 
implies that the mutual information of the responses together is strictly greater than the lower bound, implying a 
gain of information compared to either response alone.  The proof of this statement does not depend on whether 
R1 and R2 are scalars or vectors.  Applying the proof to the case in which R1 and R2 are scalars implies that the 
responses of two signaling pathways considered together, one which yields output R1 and the other which yields 
output R2, is more informative about the signal than either pathway alone.  If instead R1 is a vector representing 
a set of outputs from some (arbitrarily complicated) signaling system then the proof implies that adding the 
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conditionally independent response R2, representing either a scalar output of a separate pathway or a vector 
output of a separate signaling system, also increases the information about the signal. 
 

Theorem:  If I(R1;S) > 0, I(R2;S) > 0, and R1 and R2 are conditionally independent given S, then 
I(R1,R2;S) > max[I(R1;S), I(R2;S)] (strictly greater than the lower bound). 
 
Proof:  Suppose without loss of generality that R1 is the most informative response, i.e. I(R1;S) ≥ 
I(R2;S) > 0.  The chain rule for mutual information allows us to write 
 
 1 2 1 2 1( , ; ) ( ; ) ( ; | )I R R S I R S I R S R= + . (4.2.1) 
 
To prove that I(R1,R2;S) is strictly greater than the lower bound, I(R1;S), we must prove that 
I(R2;S|R1) > 0.  This can be proven by contradiction. 
 
Mutual information cannot be negative, so assume that I(R2;S|R1) = 0.  This implies that R2 and S 
are conditionally independent given R1, which implies that for any given values of R1, R2, and S, 
the following holds: 
 

 

2 1 2 1 1

1 2 1
2 1

1 1

1 2 2 1 1

2 2 1

( , ) ( ) ( )
( , , ) ( , )( )

( ) ( )
( , ) ( ) ( ) ( ) ( )

( ) ( ),

P R S R P R R P S R
P R R S P R SP R R

P R P R
P R R S P S P R R P R S P S

P R S P R R

=

=

=

=

 (4.2.2) 

 
where in the last line we used the conditional independence of R1 and R2 given S.  Since this 
holds for all values, we can sum the equation over all possible values of R1, yielding 
 

 
1 1

1

1 2 1 2 1

2 1 2

2 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ).

R R

R

P R P R S P R P R R

P R S P R P R

P R S P R

=

=

=

∑ ∑

∑  (4.2.3) 

 
Finally, this implies that 
 
 2 2 2( , ) ( ) ( ) ( ) ( )P R S P R S P S P R P S= = . (4.2.4) 
 
This shows that a necessary condition for I(R1,R2;S) to equal the lower bound is that R2 and S are 
unconditionally independent.  However, this would imply that R2 is not informative about S, 
contradicting the assumption that I(R2;S) > 0.  Therefore, the conditions of the claim imply that 
I(R1,R2;S) is strictly greater than I(R1;S) and also strictly greater than I(R2;S).   
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4.3  The upper bound of I(R1,R2;S) is infinity 
 In this section we show that I(R1,R2;S) has an infinite upper bound, by considering a simple example.  
Consider the case in which the responses are scalars given by the equations 
 

 1 1

2 2

R S
R S

γ
γ

= +⎧
⎨ = +⎩

, (4.3.1) 

 
where γ1 and γ2 are noise terms independent of S.  If the noise terms have non-zero variance, then the 
information provided by each individual response, I(R1;S) and I(R2;S), is finite. 
 
 Now, suppose further that the noise terms are correlated.  In the extreme, suppose that they are exactly 
negatively correlated such that γ1 = –γ2.  Biologically, this situation might be approached if the there is strong 
mutually repressive crosstalk between the two pathway branches, or when both branches are competing for the 
same signaling molecule to activate them.  Then, given knowledge of R1 and R2, their average yields: 
 

 
1 1

1 2 1 22 2( ) ( )
.

R R S
S

γ γ+ = + +

=
 (4.3.2) 

 
Hence, knowledge of R1 and R2 allows the noiseless recovery of the exact value of S.  If S is a continuous 
variable, which requires an infinite number of bits to specify exactly, then 1 2( , ; )I R R S = ∞ . 
 
 More rigorously, using the methods of Sec. 5, one can show that the mutual information of the system 

described by Eq. 4.3.1 is 
2

1 2 2 2

1 1( , ; ) log 1 2
2 1

S

S R

I R R S σ
σ ρ→

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

 if S is a normally distributed stochastic variable 

with variance 2
Sσ  , and γ1 and γ2 are normally distributed each with variance 2

S Rσ →  and correlation ρ.  (See also 
(55).)  As 1ρ → − , it is easy to see that 1 2( , ; )I R R S →∞ .  From this example, we conclude that 1 2( , ; )I R R S  is 
unbounded from above. 
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5.  INFORMATION THEORETIC ANALYSIS OF BUSH AND TREE NETWORKS 
 
5.1 Preliminaries 
 In this section, we consider signaling networks that take a single signal S and broadcast the signal out to 
n communication channels yielding the responses R1, R2, …, Rn.  We are interested in the amount of information 
that the responses jointly yield about the signal, i.e. I(R1,…,Rn;S).  To gain semiquantitative insight into such 
pathways, we assume that (R1, R2, …, Rn, S) is a multivariate normal distribution of dimension n + 1, as detailed 
in the sections below.  The Gaussian assumption enables the mutual information to be solved analytically.  The 
resulting formulas allow us to understand the relative influences of the various sources of noise on the 
information gathering ability of the signaling network and to predict the value of the mutual information.  In 
order to provide a self-contained description of the theoretical framework that is accessible to both specialists 
and non-specialists alike, we here provide a complete and detailed derivation of the formulas.  However, we 
caution the reader that the formulas will not hold, in general, for non-Gaussian distributions of the variables. 
 
 First, we establish some mathematical formulas which will be used in the derivation of the mutual 
information for specific network structures.  First, a well-known result in information theory is that a 
multivariate normal distribution of dimension n has an entropy of 
 

 ( )( )2
1 log 2
2

nH eπ= Σ , (5.1.1) 

 
where |Σ| is the determinant of the covariance matrix of the distribution (9).  Since the marginal and conditional 
distributions of a multivariate normal distribution are themselves normal, it is easy to see that 
 

 

( ) ( )
1 1 1

2 2 |

2

|

( ,..., ; ) ( ,..., ) ( ,..., | )
1 1log (2 ) log (2 )
2 2

1 log ,
2

n n n

n n
R R S

R

R S

I R R S H R R H R R S

e eπ π

= −

= Σ − Σ

⎛ ⎞Σ⎜ ⎟=
⎜ ⎟Σ⎝ ⎠

 (5.1.2) 

 
where RΣ  and |R SΣ  are the determinants of the covariance matrix of the responses and the responses given the 

signal, respectively. 
 
 If we consider just one response, R, then the determinants are given by  
 
 var( )R RΣ = , (5.1.3) 

 2
| var( | ) (1 ) var( )R S R S RρΣ = = − , (5.1.4) 

 
yielding 
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 2
2

1( ; ) log (1 )
2

I R S ρ= − − . (5.1.5) 

As expected intuitively, when there is zero correlation between R and S, their mutual information is zero.  In 
comparison, the information increases as the correlation approaches +1 or –1.  If the correlation is perfect 
(exactly +1 or –1), the information is infinite.  Note that this deterministic relation between the information and 
the correlation is a direct consequence of Gaussian assumption about the involved variables.  In general, mutual 
information among two variables is not smaller than the value calculated using the Gaussian assumption. 
 
 Finally, we establish the following lemma, which enables us to compute the determinants for multiple 
responses resulting from either bush or tree signaling networks: 
 

Lemma:  The determinant of the n × n matrix Q whose entries are given by ij i j ij iq m m a bδ= +  is 

21i i
ii i

ab m
b

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑∏ .  Here, the Kronecker delta notation (δij = 1 if i = j, and is zero otherwise) 

indicates that bi terms only appear in the diagonal elements of Q. 
 
Proof:  A basic property of the matrix determinant is that it is invariant to elementary row 
addition and subtraction (also known as Gaussian elimination).  That is, adding or subtracting a 
multiple of one row to/from another row does not change the determinant.  Therefore, the 
determinant does not change if we subtract 

1

i

i

m
m −

 times row i – 1 from row i, for each of the rows 
i = n, n – 1, …, 2.  These operations yield: 
 

 

2

1

3

2

2
1 1 1 2 1 3 1 4

2
2 1 2 2 2 3 2 4

2
3 1 3 2 3 3 3 4

2
1 1 1 2 1 3 1 4

1 2

2 3

0 0
.

0 0

m
m

m
m

m a b m m a m m a m m a
m m a m a b m m a m m a
m m a m m a m a b m m a

m a b m m a m m a m m a
b b

b b

+
+

=
+

+
−

=
−

Q

 (5.1.6) 

 

Next, we reduce row 2 by adding 
2

1 1
2
1 1

m
m b

m a b+
 times row 1 to row 2, yielding: 

 

 
2 3 1 2 4 1

3

2

1 2 1 3 1 4

(2)
(1) (1) (1)

2 3

(1)

0

0 0

m m ab m m abd
d d d

m
m

d m m a m m a m m a

b b
=

−
. (5.1.7) 
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where we have introduced the notation 2

11

( ) 1
n n

i i
ii i

ad n b m
b==

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑∏ .  Now, we claim that after 

reduction of subsequent rows, that the diagonal element of row k ≥ 2 equals ( )
( 1)
d k

d k −
, and the 

elements of row k to the right in columns h = k + 1, …, n equal 

1

1

( 1)

k

k h i
i

m m a b

d k

−

=

−

∏
. 

 
 
The claim can be proven by induction.  Clearly the claim holds for row 2.  Assume the claim 
holds for row k.  Then, the reduction of row k + 1 is performed by multiplying row k by 

( )
1

( ) / 1

k

k

m
km b

d k d k

+

−
 and adding it to row k + 1.  For the diagonal element of row k + 1, this yields 

 

 

( )
1

1
2

1 1 1
1 1

1

the element above the 
diagonal of row 1

1
2 2

1
11 1

( )

( 1) ( ) / 1 ( )

1

( )
( 1) .

( )

k

k

k k

mk k i k i k
kmi i

k

k

k k

i k i
ii k i

m m a b m a b b d kb
b

d k d k d k d k

a ab m m
b b
d k

d k
d k

+

−

+ + +
= =

+

+

+

+
== +

+
+ =

− −

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠=

+
=

∏ ∏

∑∏

 (5.1.8) 

 
and for the element in column h > k + 1 to the right of the diagonal, the row reduction yields 
 

 
( )

1

1

1
1 1

( 1) ( ) / 1 ( )

k

k

k k

mk h i k h i
kmi i

m m a b m m a bb
d k d k d k d k

+

−

+
= ==

− −

∏ ∏
. (5.1.9) 

 
This proves the claim also holds for row k + 1, completing the induction. 
 
Since the determinant of the fully row reduced (upper triangular) matrix is the product of its 
diagonal elements, the desired determinant telescopes to 
 

 2

11

(2) (3) ( )(1) ( ) 1
(1) (2) ( 1)

n n

i i
ii i

d d d n ad d n b m
d d d n b==

⎛ ⎞⎛ ⎞
= = = +⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

∑∏Q  (5.1.10) 

 
as claimed.  
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5.2  Information captured by a Gaussian bush network 
 In this section, we derive formulas for the mutual information, under Gaussian conditions, between a 
signal and multiple linear responses activated by a “bush” network.  The key feature of a bush network is that 
the network branches into multiple signaling pathways at the level of the signal, so that each response is 
conditionally independent given the signal. 
 

 
 
 The formal formulation of this model is as follows (Fig. M5).  The signal S is a normally distributed 
stochastic variable with variance 2

Sσ .  Each pathway i = 1, 2, …, n yields a linear response i i i iR m S b γ= + +  
where mi and bi are the slope (gain) and intercept (bias) respectively between Ri and S in the absence of cellular 
variability, and iγ  is a stochastic variable representing cellular variability in the response Ri.  We assume that 

iγ  is normally distributed from cell-to-cell with variance 2
iS Rσ →  and that the iγ  terms are independent of each 

other.  As a result, each of the Ri is normally distributed because each is the sum of two normally distributed 
variables, and the Ri are conditionally independent given the signal S.  Note that in this general formulation that 
each pathway can have different values for the slope, intercept, and magnitude of noise. 
 
 Since the variance of independent variables add, the variance of each response is 2 2 2var( )

ii i S S RR m σ σ →= + .  

Similarly, the covariance between any two responses is 2cov( , )i j i j SR R m m σ=  (for all i ≠ j).  Thus, using the 
lemma in Sec. 5.1, the determinant of the response covariance matrix is: 
 

 ( )
2

2 2 2 2
2

11

1
i i

i

n n
S

i j S ij S R S R iR Rij
ii S R

m m m σσ δ σ σ
σ→ →

== →

⎛ ⎞⎛ ⎞
Σ = + ⇒ Σ = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∏ . (5.2.1) 

 
When S is given, the variance and covariance terms reduce to 2var( | )

ii S RR S σ →=  and cov( , | ) 0i jR R S = .  Then, 
again using the lemma, the corresponding determinant evaluates to 
 

 ( ) 2 2
| |

1
i i

n

ij S R S RR S R Sij i

δ σ σ→ →
=

⎛ ⎞
Σ = ⇒ Σ = ⎜ ⎟

⎝ ⎠
∏ . (5.2.2) 

 
Finally, using Eq. 5.1.2, the mutual information between the responses together and the signal is 
 

 
2

2
1 2 2

1

1( ,..., ; ) log 1
2

i

n
S

n i
i S R

I R R S m σ
σ= →

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ . (5.2.3) 

 

Figure M5: Model of a bush signaling 
network.  Each pathway in the network 
transduces the signal into a linear 
response Ri, with gain mi, bias bi, and 
noise γi. 
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The ratio 2 2/
iS S Rσ σ →  can be considered to be a signal-to-noise ratio (9), where 2

Sσ  represents the signal power 

and 2
iS Rσ → is the noise (variance) introduced in transmitting from S to Ri.  The slope mi can be considered to be a 

factor that normalizes 2
iS Rσ → , or more specifically, allows the individual 2

iS Rσ →  to be compared in similar units.  
Thus, the mutual information of the n responses together can be obtained by summing the signal-to-noise ratios 
of the n pathways, when those ratios are given in comparable units.  The formula also enables determination of 
which pathways dominate the mutual information obtained by integrating multiple responses together. 
 
 When the n pathways are equivalent the formula simplifies to Eq. 2 in the main text.  In particular, if all 
the mi = 1 and the magnitude of the pathway variability is the same 2 2

iS R S Rσ σ→ →=  for each pathway i = 1, …, n, 
then the mutual information is: 
 

 
2

1 2 2

1( ,..., ; ) log 1
2

S
n

S R

I R R S n σ
σ →

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. (5.2.4) 

 
As expected intuitively, the formula reveals that the information increases as the noise introduced by each 
branch ( 2

S Rσ → ) decreases with respect to the spread in the input ( 2
Sσ ).  Furthermore, the information grows 

logarithmically with the number of responses measuring the signal, in an unbounded fashion. 
 
 
5.3  Information captured by a Gaussian tree network 
 In this section, we derive formulas for the mutual information, under Gaussian conditions, between a 
signal and multiple linear responses activated by a “tree” network.  The key feature of a tree network is that the 
signal activates a common “trunk” before branching into the individual pathways.  The trunk terminates at the 
point of branching denoted as C, i.e. the last common intermediate shared by the pathways.  Thus, the responses 
are conditionally independent given C, but not conditionally independent given the signal.  In comparison, 
responses of bush network are conditionally independent given the signal. 
 

 
 
 The formal formulation of the tree network model (Fig. M6) is similar to that of bush network model.  
The signal S is a normally distributed stochastic variable with variance 2

Sσ .  C is the last common intermediate 
in the pathways measuring the signal, with C C CC m S b γ= + + , where mC and bC are the slope (gain) and 
intercept (bias) respectively between S and C in the absence of cellular variability, and Cγ  is a stochastic 

Figure M6: Model of a tree signaling 
network.  The common trunk of the network 
transduces the signal into the intermediate 
linear response C with gain mC, bias bC, and 
noise γC.  Each downstream pathway branch 
then transduces C into the linear response Ri 
with gain mi, bias bi, and noise γi.
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variable representing cellular variability in the common trunk.  In particular, we assume that Cγ  is normally 
distributed from cell-to-cell with variance 2

S Cσ → . 
 
 Each downstream pathway yields a response i i i iR m C b γ= + +  where, similarly, mi and bi are the slope 
(gain) and intercept (bias) respectively between Ri and C in the absence of cellular variability, and iγ  is a 
stochastic variable representing cellular variability in the branch from C to Ri.  We assume that iγ  is normally 
distributed from cell-to-cell with variance 2

S Rσ → .  All of the noise terms iγ  and Cγ  are independent of each 
other and independent of S. 
 
 Substituting the definition for Ri into the definition of C reveals that Ri is normally distributed, and on 
average a linear function of S with slope (gain) mCmi and intercept (bias) mibC + bi: 
 
 ( )i C i i C i i C iR m m S m b b m γ γ= + + + + . (5.3.1) 
 
From this formula, it is easy to see that the variance of each response is 2 2 2 2 2 2var( )

ii C i S i S C C RR m m mσ σ σ→ →= + +  

and that the covariance between any two responses is 2 2 2cov( , )i j C i j S i j S CR R m m m m mσ σ →= +  (for all i ≠ j).  Thus, 
using the lemma in Sec. 5.1, the determinant of the response covariance matrix is: 
 

 ( )
2 2 2

2 2 2 2 2 2
2

11

( ) 1
i i

i

n n
C S S C

i j C S S C ij C R C R iR Rij
ii C R

mm m m m σ σσ σ δ σ σ
σ

→
→ → →

== →

⎛ ⎞+⎛ ⎞
Σ = + + ⇒ Σ = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∏ . (5.3.2) 

 
When S is given, the variance and covariance terms reduce to 2 2 2var( | )

ii i S C C RR S m σ σ→ →= +  and 
2cov( , | )i j i j S CR R S m m σ →=  (for all i ≠ j).  Then, again using the lemma, the determinant is: 
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2 2 2 2
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∑∏ . (5.3.3) 

 
Finally, using Eq. 5.1.2, the mutual information between the responses together and the signal is 
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 Similar to the bush network, the information obtained from a tree network depends on signal-to-noise 
ratios.  The information depends on two key ratios: (1) 2 2/

iS C Rσ σ → , the signal power versus the noise in the 

downstream branches, and (2) 2 2/
iS C C Rσ σ→ → , the noise in the trunk versus the noise in the downstream branches.  

The slope mi can again be considered to be a factor that normalizes the noise in the downstream branch, 2
iC Rσ → , 

enabling the noises to be compared in equivalent units.  Likewise, the slope mC normalizes the signal power 2
Sσ .  

Thus, the formula enables determination of which sources of variability dominate the mutual information 
obtained by integrating multiple responses together. 
 
 Notably, the tree network contains a bush network embedded within, i.e. the network consisting of C 
and the downstream branches.  The results for bush networks show that as the number of branches in the tree 
network grows, the information that the responses together yield about C grows without bound.  However, the 
information that those responses yield about the signal S approaches a limit: 
 

 
2 2

2
1 22 2

1

1        ( ,..., ; ) log 1 ( ; )
2

i

n
i S

n C
i C R S C

mn I R R S m I C Sσ
σ σ= → →

⎛ ⎞
→∞ ⇒ →∞ ⇒ → + =⎜ ⎟

⎝ ⎠
∑ . (5.3.5) 

 
The equivalence to I(C;S) can be seen by considering a bush network (Eq. 5.2.3) with a single branch from S to 
C with slope (gain) mC and cellular variability magnitude 2

S Cσ → .  (The data processing inequality (9) yields the 
same upper limit, i.e. if S → C → (R1, …, Rn) form a Markov chain, then I(R1,…,Rn;S) ≤ I(C;S), but Eq. 5.3.5 
shows that the limit is actually approached through the use of many pathway branches.)  Thus, many 
downstream branches allow a very accurate and informative estimate of C, but the information that these 
branches can obtain about S is limited by the bottleneck resulting from noise in the trunk portion of the pathway 
from S to C. 
 
 Finally, when the n downstream branches are equivalent the formula simplifies to Eq. 3 in the main text.  
In particular, if all the mi = 1 and the magnitude of the variability in the branches is the same 2 2

iC R C Rσ σ→ →=  for 
i = 1, …, n, and we further assume for simplicity that mC = 1, then the mutual information becomes: 
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. (5.3.6) 

 
Again, the simplified formula highlights the dependence of the information on the two key signal-to-noise ratios 
and the number of downstream branches. 
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6.  PREDICTIONS MADE BY THE BUSH AND TREE NETWORK MODELS 
 
 The Gaussian, linear response models for tree and bush networks described in Sec. 5.2 and 5.3 make 
specific quantitative predictions for mutual information.  Both models make predictions for the information that 
multiple responses yield about the signal, based on the amount of information that the individual responses 
yield about the signal.  The models also predict the mutual information between the responses.  For the tree 
model, one can further predict the information capacity of the trunk.  In this section, we derive formulas that 
enable such predictions.  We illustrate the methods given experimental data for n = 2 responses, although they 
generalize to larger n. 
 
 
6.1  Predicting I(R1,R2;S) for the Gaussian bush network 
 Eq. 5.2.3 shows that the information captured by multiple responses emanating from a bush network 
depends on the sum of the signal-to-noise ratios for the individual branches.  Reversing the relations, these 
ratios can be obtained from the information captured by the individual responses.  In particular, we may 
compute φ1, the signal-to-noise ratio for branch #1, as follows: 
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. (6.1.1) 

 
Likewise, for branch #2, 22

2 2 1Iφ = − .  Then, Eq. 5.2.3 predicts that the mutual information captured by the two 
responses together is simply: 
 

 ( )12 1 2 2 1 2
1( , ; ) log 1
2

I I R R S φ φ≡ = + + . (6.1.2) 

 
 
6.2  Predicting I(R1,R2;S) for the Gaussian tree network 
 Eq. 5.3.4 shows that the information captured by multiple responses emanating from a tree network 
depends on the sums of two signal-to-noise ratios, namely 2 2/

iS C Rσ σ →  and 2 2/
iS C C Rσ σ→ → , whose values are 

normalized by the slopes (gains) mi and mC.  For each branch, the latter ratio 2 2 2
, /

iC i i S C C Rmφ σ σ→ →≡  can be 
obtained by rearranging expressions given in Sec. 5.3 for the overall conditional variance and covariance of the 
responses: 
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The variance and covariance terms can be measured directly from the experimental data.  The ratio of the slopes 
(gains) m2/m1 (or its inverse) can also be determined experimentally as the slope of the best fit line through the 
average values of R2 plotted against the average values of R1 that are induced by various levels of the signal S. 
 
 The other key ratio, 2 2 2 2

, 1 /
iS i C S C Rm mφ σ σ →≡ , can be obtained from Eq. 5.3.4 using ,C iφ .  For branch #1, 

this is done as follows: 
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Likewise, for branch #2, we have 22

,2 ,2(2 1)(1 )I
S Cφ φ= − + .  Together, Eq. 5.3.4 then predicts that the mutual 

information captured by the two responses together is simply: 
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6.3  Predicting I(R1;R2|S) for the Gaussian bush and tree networks 
 The quantity I(R1;R2|S) measures the amount of information one can obtain about a response R1 with 
knowledge of the other response R2, or vice versa, given the signal.  It can be measured experimentally, e.g. by 
performing the computations of Sec. 2.3 on data obtained from single cells co-stained for multiple responses.  
These experimental measurements can then be compared to the values predicted from the bush and tree models. 
 
 The key assumption in the bush model is that the responses are conditionally independent given the 
signal.  Therefore, the bush model predicts Ibush(R1;R2|S) = 0. 
 
 On the other hand, the tree model assumes that the responses are not conditionally independent, and 
hence I(R1;R2|S) is greater than zero.  Since R1 and R2 are assumed to be jointly normally distributed, the mutual 
information can be predicted by considering the correlation between the responses (Eq. 5.1.5).  In this case, the 
correlation is: 
 

 

1 2

2 2

2 2
1 2

2 2

2 2
1 2

2
2 1 2

1 2
2 2

1 2
2 2 2 2 2 2
1 2

2 2
1 2

2 2
1 2

,1 ,2

,1 ,2

cov ( , | )
var( | ) var( | )

( )
( )( )

( )( )

( 1)( 1)

,
( 1)( 1)

S S

C R C R

S C S C

C R C R

S C

S C C R S C C R

C C

C C

R R S
R S R S

m m
m m

m m

m m

σ σ
σ σ

σ σ
σ σ

ρ

σ
σ σ σ σ

φ φ
φ φ

→ →

→ →

→ →

→

→ → → →

=

=
+ +

=
+ +

=
+ +

 (6.3.1) 

 



 25

where we used the φ notation of Sec. 6.2.  The values of ,1Cφ  and ,2Cφ  can be obtained experimentally using the 
methods also described in Sec. 6.2.  Then, plugging into Eq. 5.1.5 yields the predicted information: 
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 (6.3.2) 

 
 
6.4  Predicting I(C;S) for the Gaussian tree network 
 In a tree network, the common trunk from S to C sets a limit on the information about the signal that can 
be transmitted to the downstream branches, and this limit is given by I(C;S).  Eq. 5.3.5 shows that for a 
Gaussian tree network, I(C;S) depends solely on the ratio 2 2 2/C S S Cm σ σ → .  By examining the definitions of ,1Sφ  

and ,1Cφ  from Sec. 6.2 it can be easily seen that 2 2 2
,1 ,1/ /C S S C S Cm σ σ φ φ→ = .  Thus, the predicted value of I(C;S) is 
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I(C;S) can also be predicted from ,2 ,2/S Cφ φ  if a second response was measured (and so on for three or more 
responses), and the predicted values can be averaged together to yield a final prediction. 
 
 
6.5  Predicting I(R1,…,Rn;S) for the Gaussian tree network for an arbitrary number of identical branches 
 The mutual information for a tree network whose branches have identical levels of noise is given by Eq. 
5.3.6 
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where the values of mC and mi have been subsumed into 2

Sσ  and 2
S Cσ → , respectively.  This formula shows that 

the information essentially depends on just three parameters: n, 2 2/S C Rσ σ → , and 2 2/S C C Rσ σ→ → .  Here, we show 
how to fit this equation to experimental data.  To simplify the algebra, we will denote the noise ratios as 

2 2/S S C Rφ σ σ →≡  and 2 2/C S C C Rφ σ σ→ →≡ .  Furthermore, we define θn to be a function of the mutual information 
resulting from n responses as: 
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 Suppose that the mutual information has been experimentally measured for two different values of n (i.e., 
n1 and n2) and the ratio n1/n2 is also known.  First, we will show how to extrapolate to n → ∞.  To do this we 
solve Eq. 6.5.2 for n, yielding 
 

 n

S n C

n θ
φ θ φ

=
−

. (6.5.3) 

 
Then, by writing Eq. 6.5.3 for n1 and n2, dividing, and rearranging we obtain 
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Thus, the ratio /S Cφ φ  depends only on experimentally accessible quantities.  Examination of Eqs. 5.3.5 and 
6.4.1 shows that this ratio allows us to directly compute the mutual information resulting from an infinite 
number of branches as: 
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 Next, suppose that we wish to compute the mutual information for some other value of n (or, at least for 
some other value of n/n2 if the exact value of n2 is not known).  Then, replacing n1 with an arbitrary value n > 0 
in Eq. 6.5.4 and solving for θn gives 
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which is a quantity consisting of all known values except n (or n/n2).  Thus, inverting the definition of θn gives 
the desired mutual information as a function of n (or n/n2): 
 

 1 2
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7.  SUPPLEMENTARY FIGURES 
 
 
 
 
 

 
 
 
 
 
Fig. S1.  Maximum mutual information about TNF concentration.  (A) The top graph shows the maximum 
mutual information between TNF concentration and nuclear NF-κB concentration at 30 min. under a unimodal 
constraint (sorted in order of the 13 possible locations of the mode), bimodal constraint (testing all 286 possible 
locations of the two modes and the intervening minimum, sorted in increasing order of mutual information), and 
no constraint (optimal).  The bottom heat maps show the signal distributions that yield the maximum mutual 
information under the various constraints.  Each column in the heat map represents a signal distribution (a set of 
probabilities that sum to 1), each row corresponds to a specific signal value (TNF concentration), and the color 
indicates the probability associated with that signal value.  The optimal value is approached by multiple 
bimodal distributions in which only very high and very low TNF concentrations are represented.  (B) Same as 
panel A except the response analyzed is nuclear phospho-ATF-2. 
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Fig. S2.  Response distributions for various signaling systems.  The data shown here were used to compute 
some of the channel capacity values reported in Table S1.  (A) nuclear phospho-ATF-2 concentrations in mouse 
fibroblasts following 30 min. exposure to TNF at the indicated concentrations, as measured by 
immunofluorescence.  (B) Fold-change in extracellular signal regulated kinase 2 (ERK2) nucleus to cytoplasm 
ratio in human lung cancer cells in response to 10 min. epidermal growth factor (EGF) exposure, as measured in 
single live cells (see SOM, Section 1.4).  (C) Peak calcium concentration (left) and time-integrated calcium 
dynamics (right, integrated over 120 sec) in RAW264.7 macrophages following exposure to uridine 
diphosphate (UDP), a stimulus for the P2Y family of G protein-coupled receptors.  Data was obtained courtesy 
of M. Simon (California Institute of Technology), see (24).  (D) Concentrations of doubly phosphorylated Erk 
along the perimeter of wildtype Drosophila melanogaster embryos between nuclear cycles 10 and 14, as 
determined by immunofluorescence.  Each curve is fitted to an individual embryo and normalized so that peak 
Erk activities occur at the anterior and posterior poles.  Data was obtained courtesy of S. Shvartsman 
(Princeton), see (25). 
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Fig. S3.  Information flow through multiple communication channels that diverge then converge.  
Signaling through multiple communication channels to the responses R1, R2, …, Rn can increase the amount of 
information transduced about the input signal, S, as compared to the information transferred by an individual 
channel.  This information can be aggregated through downstream convergence at a common effector, E. 
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Fig. S4.  Selective activation of ATF-2 by JNK in response to TNF.  Plot shows the average nuclear 
phospho-ATF-2 concentration, as measured by immunofluorescence, of mouse fibroblasts incubated with the 
indicated JNK, mitogen activated protein kinase kinase kinase (MEKK), or p38 inhibitors for 1 hour prior to 30 
min. stimulation with TNF.  The JNK inhibitors, but not the MEKK and p38 inhibitors, were able to inhibit 
ATF-2 phosphorylation to levels at or below unstimulated cells, indicating that TNF-induced ATF-2 
phosphorylation is mediated by JNK and not MEKK or p38. 
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Fig. S5.  Bush and tree representations of the TNF signaling network.  Schematics of information flow 
through the TNF signaling network highlighting the experimentally testable hypotheses of whether the network 
lacks (bush model, left) or contains (tree model, right) an information bottleneck due to the steps of receptor 
complex activation common to multiple TNF signaling pathways. 
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Fig. S6.  Distribution of ATF-2 activity in response to TNF.  Histograms showing the distribution of nuclear 
phospho-ATF-2 concentrations in mouse fibroblasts in response to 30 min. TNF exposure at the indicated 
concentrations. 
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Fig. S7.  Statistical dependence between NF-κB and ATF-2 responses to TNF.  Plot shows the 
experimentally measured statistical dependence between the NF-κB and ATF-2 responses, as quantified by the 
mean value of I(NF-κB; ATF-2 | TNF) (see SOM, Sections 2.3 and 6.3), compared to values predicted by the 
bush and tree network models.  The bush model predicts conditional independence between the responses and 
hence zero mutual information, but the tree model predicts conditional dependence resulting from the common 
trunk with mutual information of 0.22 ± 0.01 bits, which corresponds exactly with the experimentally observed 
value of 0.22 ± 0.03 bits.  Conditional dependence between the responses may also arise from crosstalk between 
the pathways, but there is likely insufficient time for substantial crosstalk to occur following 30 min. TNF 
exposure. 
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Fig S8.  Responses to TNF with and without A20-mediated negative feedback.  Plots show joint NF-κB and 
ATF-2 responses to TNF in wildtype and A20-/- cells at the indicated time points.  Each datapoint represents a 
single cell.  Only the responses to zero and saturating TNF concentrations are shown to clearly display observed 
changes in the dynamic range and noise. 
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Fig. S9.  Dynamics of NF-κB activity in wildtype versus A20-/- cells.  (A, B) Plots reproduced from Fig. 3C 
and 3D depicting the dynamics of NF-κB responses in wildtype (panel A) and A20-/- (panel B) mouse 
fibroblasts exposed to saturating concentrations of TNF.  Average dynamics (black) and the expected 
magnitudes of the dynamic range (double arrow) and noise (single arrow) are shown.  (C, D) Time courses of 
the NF-κB response to 10 ng/mL TNF measured by immunocytochemistry, confirming that, on average, 
wildtype cells show biphasic dynamics consisting of an initial peak of activity lasting 1 hour, followed by a 
secondary steady phase lasting several hours (panel C), while A20-/- cells show a rapid increase in NF-κB 
activity in the first hour followed by a slower increase thereafter (panel D). 
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Fig. S10.  Dynamic range and noise in responses to TNF.  Dose response curves for mean nuclear NF-κB (A) 
and phospho-ATF-2 (B) concentration in response to TNF for the indicated duration in the indicated cells.  The 
top plots demonstrate that, for either response, the dynamic range is greater at 30 min. but smaller at 4 hrs. in 
wildtype cells than in A20-/- cells.  The bottom plots demonstrate that, for either response, the noise magnitude, 
measured as the standard deviation of the response, is greater (or at least no smaller) in A20-/- cells than in 
wildtype cells at all TNF concentrations and time points examined. 
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Fig. S11.  The PDGF signaling network contains an information bottleneck.  (A) Scatter plot showing 
nuclear NF-κB and ATF-2 responses to 30 min. stimulation of PDGF.  Each datapoint represents a single cell, 
and each concentration of TNF examined is shown using a distinct color.  (B) Schematics of information flow 
through the PDGF signaling network highlighting the experimentally testable hypotheses of whether the 
network lacks (bush model, left) or contains (tree model, right) an information bottleneck due to the steps of 
receptor complex activation common to multiple PDGF signaling pathways.  (C) Comparison of bush and tree 
model predictions for the capacity of the PDGF network to experimental values.  At 30 min., the NF-κB and 
ATF-2 pathways together capture more information about PDGF concentration than either pathway alone (bars 
1-3), and the tree rather than bush model accurately predicts this increase (bars 3-5).  The tree model further 
predicts a receptor level bottleneck of 1.18 ± 0.01 bits (bar 6). 
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Fig. S12.  Information increase attainable from temporal correlations in reporter gene expression.  Plot 
showing the additional information that a cell can gain from the reporter gene expression level at 9.75 hrs TNF 
exposure and the expression level at an earlier time point (ranging from 2.25 to 6.00 hr), as measured by the 
mutual information between the expression levels at the two time points.  The results indicate that a cell that can 
determine the reporter gene expression level at both an early and late time point can capture ~0.5 bit more 
information about TNF concentration than a cell that can only determine the expression level at the late time 
point. 
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8.  SUPPLEMENTARY TABLES 
 
 
 
 
 
 
 
 
 
 
 
 

Signal Response Maximum mutual 
information (bits) Reference 

TNF NF-κB 0.92 ± 0.01 Figs. 1D, 2C 

TNF ATF-2 0.85 ± 0.02 Figs. S6, 2C 

TNF NF-κB and ATF-2 1.05 ± 0.02 Figs. 2C, 2D 

PDGF NF-κB 0.67 ± 0.01 Fig. S11A 

PDGF ATF-2 0.74 ± 0.01 Figs. S2A, S11A

PDGF NF-κB and ATF-2 0.81 ± 0.02 Fig. S11A 

EGF Erk (fold-change) 0.60 ± 0.03 Fig. S2B, (23) 

UDP Peak Ca2+ 1.22 ± 0.03 Fig. S2C, (24) 

UDP Integrated Ca2+ 1.07 ± 0.02 Fig. S2C, (24) 

Position Doubly phosphorylated Erk 1.61 ± 0.05 Fig. S2D, (25) 
 

Table S1.  Experimentally measured channel capacity of various signaling pathways. 
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