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Rats responded on 2 levers delivering brain stimulation reward on concurrent variable interval schedules.
Following many successive sessions with unchanging relative rates of reward, subjects adjusted to an
eventual change slowly and showed spontaneous reversions at the beginning of subsequent sessions.
When changes in rates of reward occurred between and within every session, subjects adjusted to them
about as rapidly as they could in principle do so, as shown by comparison to a Bayesian model of an ideal
detector. This and other features of the adjustments to frequent changes imply that the behavioral effect
of reinforcement depends on the subject's perception of incomes and changes in incomes rather than on
the strengthening and weakening of behaviors in accord with their past effects or expected results.
Models for the process by which perceived incomes determine stay durations and for the process that
detects changes in rates are developed.

When subjects of many different species choose between re-
sponse options that are rewarded on concurrent variable interval
schedules, the ratio of the amounts of time they invest in the
options approximates the ratio of the incomes they realize from
them, where income is defined as the amount of reward per unit of
session time (Davison & McCarthy, 1988; Herrnstein, 1961, 1991;
Herrnstein & Prelec, 1991). This is called matching behavior. It is
at least approximately optimal in that there is no other response
pattern that will substantially increase the overall income (Baum,
1981; Heyman & Luce, 1979). The question is, how is this income-
maximizing pattern of behavior arrived at? Is it shaped by the
selective strengthening and weakening of responses by their con-
sequences? Or is matching elicited by the perceived ratio of the
incomes, as Heyman (1982) has argued?

A variable interval (VI) schedule is a random rate process with
exponentially distributed delays of reward. The scheduling of the
next reward is independent of the time that has elapsed since the
last reward was harvested. Importantly, once a reward is sched-
uled, it remains available until the subject again tries that option
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(depresses the lever served by that schedule) and thereby harvests
the reward. Thus, the longer the subject has gone without pressing
one of the levers, the more certain it is that a reward is set up there
for immediate harvest. When two levers are concurrently avail-
able, each producing rewards through independently operating VI
schedules, a subject can obtain something approaching the maxi-
mum possible combined income if it repeatedly tries both levers at
intervals shorter than the expected delays (Heyman, 1982). Even
when the levers pay off at very different rates, the subject gets
more income by moving back and forth between them than it
would get by devoting all of its time to the lever that pays off more
frequently. Thus, matching behavior in the face of these contin-
gencies is rational in the economists' sense of the term.

Instrumentally conditioned or operant behavior is by definition
the result of a hill climbing process involving feedback from the
consequences of behavior onto the mapping from a perceived
stimulus situation to the behavior produced by that perception. In
the given situation, different behaviors are tried. Those that pro-
duce reward are strengthened; those that produce no reward are
weakened. Situation-specific response strengthening and weaken-
ing continues until the subject arrives at a pattern of behavior that
maximizes its return, the amount of reward per response or per unit
of time invested (Herrnstein & Vaughan, 1980). Elicited (or un-
conditioned) behavior, by contrast, is generated by a purely feed-
forward process; the conditioned response is elicited by a given
perception. In classical or Pavlonian conditioning, for example, the
perception of a temporal contingency between a neutral stimulus
(CS) and a reinforcer elicits conditioned responding to the CS,
whether those responses have reinforcing consequences or not
(Brown & Jenkins, 1968; Gamzu & Williams, 1971; Williams &
Williams, 1969).
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Purely feed-forward processes can adjust to changes in the

stimulus situation more rapidly than feedback processes because
the completion of the adjustment does not require the assessment
of the consequences of intermediate adjustments. Thus, measuring
the rapidity of the adjustments to changes in the relative rates of
reward may reveal the locus of reinforcement's effect. Does it act
either on the strength of a stimulus-response connection or on the
expected values of responses, as models involving selection by
consequences posit? Or does it affect only perceived incomes, with
the observed behaviors being fixed consequences of those percep-
tions, as purely feed-forward models posit?

In experiments with rats pressing two levers for brain-
stimulation rewards delivered on concurrent variable interval
schedules, we made signaled and unsignaled step changes in the
scheduled rates of reward and measured how rapidly subjects
adjusted the expected durations of their stays. We found that when
these changes occur frequently, the subjects' adjustments are about
as rapid as they could in principle be.

In previous work (Mark & Gallistel, 1994), we found that rats
adjusted to a signaled change in the relative rates of brain-
stimulation reward extremely rapidly—within one or two interre-
ward intervals on the learner schedule. Dreyfus (1991) reported
comparable findings using pigeons responding for food reward.
His changes occurred after a fixed amount of session time had
elapsed but were otherwise unsignaled. In both cases, however, the
subjects experienced frequent changes in the relative rates of
reward. In Mazur's (1995) experiments, by contrast, pigeons ex-
perienced a prolonged multisession stability in the relative rates of
reward before an unsignaled change. The transitions observed in
Mazur's experiments took considerably longer than those observed
by Mark and Gallistel (1994) and Dreyfus (1991).

In the experiments we now report, our subjects first experienced
a multisession phase with unchanging relative rates of reward, then
an unsignaled transition, then another prolonged phase of con-
stancy at the new relative rates, then phases in which the relative
rates and overall rates changed frequently, then, finally, another
prolonged phase of constancy followed by a final transition. This
design allows us to contrast the transitions seen after prolonged
stability with the transitions seen when the relative rates of reward
change frequently. It also allows us to determine how many
changes in the relative rates of reward a rat must experience before
its transitional behavior changes from the slow transitions that
follow prolonged stability to the rapid transitions seen when the
rates of reward change frequently. Finally, it allows us to deter-
mine whether slow transitions are due to lack of prior experience
with changes in rates of reward or to prolonged stability preceding
a change.

Method

Subjects

The subjects were 6 white male Sprague-Dawley rats (bred at the
University of California, Los Angeles), implanted with monopolar stimu-
lating electrodes in the posterior part of the lateral hypothalamus. The
electrodes were made from No. 00 stainless steel insect pins insulated with
Formvar to within 0.5 mm of their tip. There was an indifferent electrode
on the skull surface. The placement of the stimulating electrodes was
verified by standard histological procedures at the conclusion of the ex-
periments. The subjects were 100-120 days old and weighed between 290

and 400 grams when they were implanted. These subjects were selected
from a larger pool of similarly implanted subjects because they learned to
press a lever for brain stimulation reward (at the parameters indicated
below) during a 30 min screening session conducted 1 week after the
electrodes were implanted. They entered the initial phase of the experiment
after two 30 min sessions of continual reinforcement in a single-lever
screening box.

Apparatus

The subjects responded for brain stimulation reward in Plexiglas boxes
measuring 26 cm2 X 44 cm high. The floors were covered with hardware
cloth. In the center of one wall, a Plexiglas protrusion created two al-
coves, 11.5 cm wide X 11 cm deep. In the center of the wall at the back
of each alcove, there was a retractable lever (BRS/LVE Model RRL-015)
located 5.5 cm above the floor. Placing the levers in alcoves made it
impossible for a subject to switch between levers in less than about 1.5 s.
Thus, there was no need for a changeover delay, which is often added to
concurrent variable interval schedules to prevent subjects from alternating
very rapidly between levers or keys.

The experiments were controlled by PC/XT type microcomputers, which
controlled custom-designed constant-current stimulators. The stimulators
shunted the stimulating electrode to the indifferent electrode between
pulses, thereby preventing the monophasic cathodal pulses from polarizing
the electrode-tissue interface. The computers specified all parameters of
the stimulation, scheduled the rewards, and recorded the data. The data
were logged in the form of a text file, with each line in the file representing
the occurrence of a specified event and the elapsed session time (in
milliseconds) at which it occurred. The events recorded were leverl down,
leverl up, Iever2 down, Iever2 up, rewardl armed (set up by the schedule),
reward2 armed, rewardl delivered, and reward2 delivered. For technical
reasons, the session timer did not run during the half second when a reward
was delivered. Thus, reward deliveries appear in the raw data as point
events, events with no duration.

Procedure

The rewards were 0.5-s trains of 0.1-ms cathodal pulses, delivered at a
frequency of 126 pulses per second and an amplitude of 400 jiA. VI
schedules of reinforcement were generated using independent constant
probability geometric approximations to an exponential distribution. Be-
ginning immediately after a reward was collected from a lever, the com-
puter flipped an electronic coin once each second to determine whether to
set up the next reward on that lever. The probability, p, of this coin coming
up "heads" determined the expected delay (1/p s) to the next available
reward. The reward was delivered immediately if the rat was holding the
lever down at the moment it was set up. If not, the reward was delivered
on the next depression of the lever.

The experiment was run in approximately 130 daily sessions lasting 2 hr
each. The first phase of the experiment was 33.5 sessions long (36.5
sessions in Subject Rx). The relative rates of reward on the two sides
remained constant throughout this phase. The second phase began half way
through the 34th session (37th for Rx), when there was an unsignaled
change in the relative rates of reward. The new relative rates of reward
remained in force throughout the second half of the session and for 20
sessions thereafter. The third and fourth phases, each lasting 20 sessions,
began with the session following the end of the second phase. In these two
phases, subjects experienced a change in the rates of reward between the
end of each session and the beginning of the next. Also, within each
session, they experienced an unsignaled change at a point selected ran-
domly with uniform probability within the middle 80 min of the session.
The sequence of conditions for each subject is given in Table 1.

Phases three and four differed with regard to whether it was the relative
rates or the overall rates that changed. In one phase, called the relative
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Table 1
Sequence of Conditions by Subject

Phase

No. of 2-hr sessions

1

33.5

2

20.5

3

20

4

20

5

33.5

6

20.5

Programmed rates of reward

Subject
A
B
D
E
K
Rx

1/1, 9.4
1/1, 9.4
1/4, 9.4
1/4, 9.4
1/1, 9.4
1/1, 9.4

1/4, 9.4
4/1, 9.4
4/1, 9.4
4/1, 9.4
1/4, 9.4
4/1, 9.4

varied, 9.4
1/1, varied
varied, 9.4
1/1, varied
varied, 9.4
varied, 9.4

1/1, varied
varied, 9.4
1/1, varied
varied, 9.4
1/1, varied
1/1, varied

1/1, 9.4
1/1, 9.4
1/4, 9.4
1/4, 9.4
1/1, 9.4
1/1, 9.4

1/4, 9.4
4/1, 9.4
4/1, 9.4
4/1, 9.4
1/4, 9.4
4/1, 9.4

Note. The programmed rates of reward are presented as Side I/Side 2 and total rewards per minute.

condition, the sum of the programmed rates—hence the programmed
overall rate—was held constant (at 9.4 rewards/min); only the relative rates
changed. In the other phase, called the overall condition, the relative rates
of reward were fixed at 1:1, and the sum of the rates varied between and
within each session. (The sum varied between the following values: 2.1, 6,
9.4, and 18 rewards per minute.)

In the fifth phase, the subjects ran further 33.5 sessions with unvarying
relative rates of reward. At the beginning of the sixth phase, there was an
unsignaled midsession change in the relative rates of reward, which re-
mained in force for several more sessions. The purpose of the fifth and
sixth phases was to determine whether a renewed period of prolonged
stability would lead to slow transitions in subjects that had previously made
very rapid transitions.

When the relative rates of reward varied, five pairs of schedules were
used (VI 7.1-s/VI 62.5-s, VI 8.55-s/VI 25.64-s, VI 12.82-s/VI 12.82-s,
VI 25.64-s/VI 8.55-s, and VI 62.5-s/VI 7.1 s). The corresponding ratios of
rates of reward are 9/1, 3/1, 1/1, 1/3, and 1/9. The sum of the rates in each
pair (the sum of the reciprocals of the Vis) is 9.4 rewards per minute. For
some subjects, the between-session transitions were initially big (from 9/1
to 1/9) and grew progressively smaller over sessions. In these subjects, the
within-session transitions were initially small (e.g., from 1/1 to 1/3) and
grew progressively bigger over sessions. For other subjects, these orders
were reversed. The factor by which the rate on any one side changed varied
from 1.2 to 9.

The between-session transitions are signaled transitions because a
change in the rates of reward reliably occurs at the beginning of each such
session. The within-session transitions are unsignaled. Thus, some subjects
first encountered big unsignaled transitions and small signaled transitions,
whereas other subjects first encountered small signaled transitions and big
unsignaled transitions. All subjects, however, eventually experienced the
full range of both kinds. In the case of the signaled transitions, subjects
experienced step transitions of unpredictable direction and magnitude at a
predictable time (the beginning of a session). In the case of the unsignaled
transitions, subjects experienced transitions of unpredictable direction and
magnitude at an unpredictable time within the middle two thirds of each
session.

For our time-allocation analyses, we divided session time into four
mutually exclusive and exhaustive categories: stays on Side 1, travel time
from Side 1 to Side 2, stays on Side 2, and travel time from Side 2 to
Side 1. A stay on Side 1 lasted from the first lever down on Side 1
following a lever up on Side 2 to the last lever up on Side 1 before a lever
down on Side 2—and similarly for a stay on Side 2. In this report, we focus
on an analysis of the stay durations because matching behavior is defined
by the relation between the expected stay durations on the two sides and the
expected interreward intervals.

Results

Distributions of Stay Durations

The distributions of stay durations (dwell times) rose to a peak
between 0.5 and 1 s and then tailed off in an approximately
exponential manner, regardless of the relative rates of reward and
of whether it was the distribution for the richer or the learner side
(Figure 1). This is consistent with previous reports in the pigeon
(Gibbon, 1995; Heyman, 1979, 1982).

In an exponential distribution, the fraction of the total num-
ber of visits lasting longer than a given interval decreases by a

Stay Duration (s)
10 20 30 40

4 8 12
Stay Duration (s)

Figure 1. Representative distributions of stay durations (left side) and the
corresponding log survivor plots (right side).
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fixed percentage per unit increase in the given interval. Hence,
the logarithm of the surviving fraction is a linearly decreasing
function of time (right side of Figure 1). The slope of a log
survivor plot gives the leaving rate in departures per second
(after a sign change). (The slopes of the plots in Figure 1 must
be multiplied by 2.3 to obtain the leaving rate because we used
the common logarithm.) The leaving rate is the reciprocal of the
expected stay duration. Thus, in the distribution at the top of
Figure 1, there were 2.3 X 0.049 = 0.11 departures per second
of time spent on the richer side in all those semisessions with a
9:1 ratio of programmed rates of reward. The expected duration
of a stay on this side was 1/0.11 = 8.86 s. By contrast, the
expected duration on the leaner side (middle plot) was 0.71 s =
l/(2.3 X 0.61). The expected duration of a stay in those semis-
essions with equal programmed rates of reward (concurrent
VI 12.8 s schedules) was 3.1 s = l/(2.3 X 0.14), which is
somewhat shorter than half the expected interval between suc-
cessive rewards (6.4 s). When subjects sample the two sides at
these rates, variations in the relative amounts of time they
allocate to the two sides have little impact on the incomes they
obtain (Heyman, 1982).

As noted above in the Methods section, for technical reasons,
the session clock did not run while the computer was delivering
a 0.5-s reward. In consequence, the raw data records occasionally
have stays of 0 duration. These occurred whenever the lever was
armed before the rat depressed the lever to begin its stay (i.e., there
was a reward waiting to be harvested); the rat released the lever
while the reward was being delivered and then left to return to the
other side. These bogus 0-duration stays cause wild jumps in our
statistical measure of the strength of the evidence for changes in
the expected stay duration (developed below). Therefore, before
applying our algorithms to the data, we corrected the raw data
record by changing stays of 0 duration to stays of 0.5-s duration.
This value was chosen for two reasons: (a) It was the duration of
the reward, and (b) it was the most probable stay duration in the
condition that produced the shortest expected stay duration (mid-
dle panel of Figure 1).

Transitions After Prolonged Stability

To visualize the time course of a transition from one pattern of
time allocation to another, we need to portray the evolution of the
subject's time-allocation behavior. The portrayal that has proved
most illuminating is the graph of the cumulative time on Lever 1
against the cumulative time on Lever 2, hereafter called the cum-
cum function. The x coordinate of a point on this graph is the
cumulative duration of the stays on Side 2 up to a given moment
in the session; the y coordinate is the cumulative duration of the
stays on Side 1 up to that same moment. The slope at any point is
the subject's time-allocation ratio at that point. When the animal
matches, the slope of this function equals the ratio of the rates of
reward. For example, if the rate of reward on Side 1 is four times
slower than the rate on Side 2, the subject is matching when the
average duration of a stay on Side 1 is four times shorter than the
average duration of a stay on Side 2. In that case, the slope of the
cum-cum function is 1/4—1 min spent on Side 1 for every 4 spent
on Side 2 (see Figure 2).
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Figure 2. Cum-cum functions for the first (Phase 1-Phase 2) transition.
The thin matching lines indicate the programmed ratio of reward rates.
When the cum-cum curve parallels this line, the subject's time-allocation
ratio matches the ratio of the programmed rates of reward. Thick gray lines
show the cum-cum coordinates of the programmed change point, the total
amounts of time spent on each side up to the moment at which the
programmed rates of reward changed.

Ideally, the matching lines that we show on cum-cum figures for
comparison purposes would express the ongoing ratio of the ob-
tained rates of reward rather than the ratio of the programmed
rates. This would enable us to compare the slope of the cum-cum
function to the slope of the rate ratios actually experienced by the
subject. The evolving rate ratio, however, cannot be displayed on
the same axes as the cum-cum function because it is the ratio of the
number of rewards on Side 1 to the number of rewards on Side 2
{njtln-jt = n1/n2, where t is session time). The ratio of the
obtained rates of reward is generally close to the ratio of pro-
grammed rates of reward. Nonetheless, it should be born in mind
that in looking at the evolution of a subject's time allocation by
means of a cum-cum function, we compared the slope of that
function against the ratio of the programmed rates of reward, not
the obtained rates, so some of portion of an apparent discrepancy
in slopes (apparent failure to match) is due to differences between
the programmed relative rate of reward and the actually obtained
relative rate.

The point at which the cum-cum functions in Figure 2 became
approximately parallel to the postchange matching line was esti-
mated by eye, and the interval from that point back to the pro-
grammed change point was measured, both in session minutes and
visit cycles (number of visits to each side). The intervals thus
determined were substantial. The subjects took from 30 to 60 min
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and 54 to 550 visit cycles to adjust completely or nearly com-
pletely to the unexpected change in the rates of reward.1

Although the subjects took a substantial interval to complete
their adjustment, the adjustments began soon after the programmed
change. To substantiate this claim, we needed a running measure
of the evidence for changes in rates of reward and of the evidence
for changes in the rat's behavior. In the Appendix, we develop a
Bayesian formula for calculating the log of the odds (the logit) that
there has been a change in a random rate process. A logit of 2
corresponds to odds of 100 to 1 against the null hypothesis (no
change in rate), that is, to ap value of .01 in a conventional test for
significance; a logit of 3 corresponds to odds of 1,000 to 1 (p <
.001); and so on. In Figure 3, we plot these logits against session
minutes for the period beginning 5 min before the programmed
change and extending until the evidence for a change exceeds a p
value of .0001 (logit = 4).

When there is a big change in reward rate on one side and a
much smaller change on the other, strong evidence for these
changes appears first on the side where the change is large and

Subject A Subject E

o>
O)
c
TO
c.
O

O
<n

O
<B

0)
O

O5
O

55 60 65 70 75 80 85 90 95 55

Subject B Subject K

Subject D Subject Rx

55 60 65 70 55 60 65

Sess ion Minu tes

Figure 3. The emergence of the earliest evidence for a change in reward
(Rwd) rates and the earliest evidence for a change in stay durations as a
function of session time at the first transition. The ordinate intersects the
abscissa at the moment of the programmed change in reward rates. In cases
where there was already strong evidence for a change in stay durations at
the time of the programmed change in rates of reward, the curves for the
stay duration series have been lowered to bring their commencements close
to those of the other curves (Subjects B and K).

only later on the other side. Similarly, evidence of a change in the
rat's expected stay duration often appears sooner on one side than
on the other. To show the lag between the evidence for a change
in reward rates and the evidence for a change in stay durations, we
plotted the earlier rising reward curve and the earlier rising stay
duration curve. In other words, we plotted the lag between the first
evidence for a change in rates of reward and the first evidence of
a change in expected stay durations (Figure 3).

Figure 3 shows that the latencies between the appearance of
evidence for a change in rates of reward and the appearance of
evidence for changes in the subject's stay duration is short—on the
order of minutes or less. Thus, subjects detected the change almost
as soon as there was evidence of it and began their adjustment to
it at that time, but the time course of the adjustment was prolonged.

Figure 4 shows the cum-cum functions for the final transition.
When the subjects experienced this change in the relative rates of
reward, they all had extensive experience with such changes, but
this one was preceded by a long period of stability, like the first
transition. The cum-cum functions in Figure 4 (final transition) are
strikingly similar to the cum-cum functions in Figure 2 (first
transition). Thus, the amount of prior experience with changes in
rates of reward does not determine how rapidly a subject com-
pletes its adjustment to a change in the relative rates of reward.
What matters is the frequency with which such changes have been
encountered recently. When changes have been infrequent, the
subject takes a long time to complete its adjustment. This is as true
when subjects have experienced many changes in rates of reward
as when subjects have no previous experience of such changes. By
contrast, when changes have recently been frequent, the subject
completes its adjustment extremely rapidly (see below).

Reversions to the Status Quo Ante

Mazur (1995, 1996) reported that when pigeons experienced an
unsignaled midsession change in concurrent VI schedules, which
remained in force through subsequent sessions, their time-
allocation behavior reverted to the status quo ante at the beginning
of the next few sessions. We saw the same thing in our rat subjects
following the first and final transitions (Figure 5). This spontane-
ous recovery of earlier time-allocation behavior explains the in-
formally reported experience of many investigators that it takes
several sessions for matching behavior to stabilize following a
change in the relative rates of reward. As is seen below, this
multisession adjustment is only seen when there has been a long
period of stability prior to the change.

Abrupt and Complete Adjustments When Changes Are
Frequent

In the relative condition, where there was a new relative rate of
reward at the beginning of each session and an unsignaled change

1 The subjects with prolonged exposure to a fourfold difference in
reward rates during Phase 1 showed strong overmatching after the first four
or five sessions; that is, they spent much more than four times as much time
on the richer side, as is evident in Figure 2 and again in Figure 4. Strong
overmatching has rarely been reported. We are not sure why it emerged
during the prolonged stability phase of this experiment. We conjecture that
it may be related to the high reward densities.
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Figure 4. Cum-cum functions from the final transitions (Phase 5-Phase 6
transition). As in Figure 2, the point at which the cum-cum function became
approximately parallel to the postchange matching line (thin solid lines) was
estimated by eye, and the interval to achieve this adjustment was measured
both in session minutes and visit cycles. Heavy gray lines give the coordinates
of the cum-cum function at the moment of the programmed change in rates of
reward. The dashed lines are the prechange matching lines.

O

Cumulative Side 2 Stay Duration (min)

Figure 5. At the beginning of the session following the first transition,
subjects' time-allocation behavior reverts to the pattern preceding the
change in the relative rates of reward (representative data). On each graph,
we have drawn for comparison purposes the matching line corresponding
to the pretransition rate ratio and the matching line corresponding to the
posttransition rate ratio.

somewhere in the middle, subjects generally showed approximate
matching to each relative rate of reward, and they soon began to
adjust completely within the span of a very few visit cycles. From
the insets in Figure 6, which plot the adjustments visit cycle by
visit cycle, it can be seen that the entire shift in behavior from the
prechange time-allocation pattern to the postchange time-
allocation pattern often occurred within the span of one or two visit
cycles. Time-allocation ratios did not slowly approach a new
steady state; they jumped from the old steady state to the new

steady state.

Adjustment Latencies

It is evident from Figure 6 (see also Figure 11) that the abrupt
adjustments in the rat's expected stay durations occur soon after
the programmed change in the relative rates of reward. How
quickly does the observed change in behavior follow the observed
change in reward rates? To answer this question, we must compare
an estimate of the time at which the rat reacted to an estimate of the
time at which reward rates changed. Neither time can be known
exactly by an observer not privy to the computer program sched-
uling the rewards. Their values must instead be described by
probability density functions (pdfs). These pdfs, one for the change

o

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

Cumu la t i ve S ide 2

0 10 20 30 40 50 60

S t a y D u r a t i o n ( m i n )

70

Figure 6. Sample cum-cum functions showing the abrupt transitions
generally observed in the relative condition in response to the unsignaled
within-session changes in the relative rates of reward. The thin lines show
the programmed relative rates of reward. The thick gray lines (and the gray
squares on insets) show the coordinates of the programmed change point.
The insets show the cum-cum function in the immediate vicinity of its
"knee," the period during which the subject adjusted its average stay
duration to the new relative rates of reward. The points in these insets
represent the cum-cum function at the termination of each successive visit
cycle. The labels on each panel identify the subject and session number.
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in rates of reward and one for the change in leaving rates, can be
computed from the sequence of interreward intervals and the
sequence of stay durations, respectively. (The derivation of this
computation is given in the Appendix; the relevant equation is A4).
Our measure of how soon the behavior changed following changes
in reward rates was the normalized distance between the reward
pdf with the earlier mean, min (fr l, fr2), and the stay duration pdf
with the earlier mean, min (rdl, fd2)—see Figure 7A. The normal-
ized distance, which we denote the lag measure, is defined to be
the t statistic, that is, the difference between the two means divided
by the square root of the sum of their variances (Figure 7B).

Figure 8 shows the distribution of these lag measures for the
midsession transitions in the relative condition. As one would
expect, the lags are mostly positive (80%), meaning that the first
evidence for a change in stay durations appeared after the first
evidence for a change in rates of reward. They are also mostly
small, meaning that there was little lag between the first evidence

•Rat, Side 2

Rat, Side 1

•Rwd, Side 2

Rwd, Side 1

31 33
Session Time (min)

mode = tc

35

o

31
Session Time (min)

min(7d1,7d2)
min(fr1,y
Rat, Side 2
Rwd, Side 2

32

Figure 7. Panel A: Representative temporal probability density functions
(pdfs), specifying the location within the session of the changes in the two
rates of reward (Rwd, Side 1 and Rwd, Side 2) and the answering changes
in the rat's stay durations (Rat, Side 1 and Rat, Side 2). In this example, the
pdf for the reward change that first becomes evident (thick black line) is on
Side 2 and so is the pdf for the change in stay durations that first appears
(thick gray line). These are the two earlier pdfs. Panel B: Replotting of the
two earlier pdfs from Panel A. The difference between the means of these
pdfs (min[fdl, ?d2] ~ min[?rl, ?rj) divided by the square root of the sum of
their variances is a measure of how closely the first evident change in
expected stay duration followed the first evident change in reward rates.
The mode of the pdf for the change in the rat's stay durations is the
moment, tc, at which that change is maximally likely to have occurred.
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Figure 8. Histogram of the statistical distances (t statistics) by which the
change in stay durations lagged the change in reward rates.

of a change in reward and the first evidence of a change in
behavior.

Negative lags come from cases in which the mean of the stay
duration pdf was earlier than the mean of the reward pdf. These
arose in one of two ways: (a) small negative lags occurred when
the rat made a large change in its stay durations even though there
was only weak evidence for a change in the rates of reward, and (b)
large negative lags occurred when there was a spontaneous change
in the rat's stay duration prior to the change in rates of reward (for
examples of such changes, see Figure 13). These anticipatory
changes were presumably fortuitous; they occurred less than 10%
of the time.

Figure 8 shows that the lags were generally small. However, the
lag is not a measure of how well the rats did relative to what was
in principle possible because it is not a real-time measure: In
calculating the pdfs for both the change in reward rates and the
change in expected stay durations, we made use of the information
from the whole session. We should ask, how well could the rat do
using only information that is available in real time? As with the
pdfs described above, the answer is probabilistic: The best any
observer can do is compute the probability density distribution of
the reward rate given the observed interreward intervals.

In the Appendix, we show how to compute such a probability
density distribution—see especially Equation A12. Shown in Fig-
ure 9 are these probability density distributions; probability density
(y axis) is plotted as a function of rate (x axis) at successive session
times (z axis). In the left-hand panels of Figure 9, successive pdfs
(successive curves in the x-y plane) specify probabilistically the
reward rate on the basis of the information contained in the
sequence of interreward intervals up to that point in the session.
Early in the session, after only a few rewards, the reward rate is
both poorly defined (a shallow broad curve) and misleading (the
curves peak in the wrong place). As more rewards are obtained,
however, the curves become narrow, sharply peaked and consis-
tently located in the same region of the rate axis. At Minute 31 of
the session, the programmed reward rate changed. At this point,
the pdf for the reward rate became transiently shallower and
broader, but it soon rose and resharpened as the new rate of reward
became well defined. The broadness near the transition point
reflects the uncertainty whether the rate has changed or not.
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Reward Rates Leaving Rates

Figure 9. Left panels: Probability density (v axis) for reward rates (x axis)
as a function of session time (z axis). The clock for the interreward
intervals runs continuously. Right panels: Probability density for the rat's
leaving rate as a function of session time. The leaving rate is the number
of departures per unit of time on side; that is, a stay-duration clock runs
only when the rat is on a given side. We mapped the latter functions onto
session time using the session times associated with each departure.

In the right-hand panels of Figure 9, successive pdfs specify
probabilistically the rat's leaving rate on a given side (the recip-
rocal of its expected stay duration) on the basis of the information
available up to that point in the session. Notice that in the period
before the change in the relative rates of reward, there were several
spontaneous changes in the rat's expected stay durations. Despite
this instability in its prechange behavior, there is a clear reaction to
the change in the programmed rates of reward; in response to this
increase in the relative rate of reward on Side 2, the rat's expected
stay duration abruptly shifted to a longer time (a lower leaving
rate), whereas on Side 1 it abruptly shifted to a shorter time. The
abruptness of the changes in the pdfs for the rat's stay durations is
comparable to the abruptness of the change in the pdfs for the
reward rates, and the latter changes are known to be step changes.
Thus, as already indicated (Figure 6), the rat's adjustment approx-
imates a step adjustment.

The pdfs in Figure 9 were derived using a Bayesian approach
combined with a hidden Markov model (see the Appendix for
details). The basic idea behind the derivation is as follows: Given
the time the reward rate changes and the rates before and after that
change, one could write down the joint probability distribution for
reward times. That joint distribution can be inverted, using Bayes'
theorem, to derive the probability distribution of reward rates and
time of change given the set of reward times. The latter distribu-
tion, however, depends on the prior for the reward rates, a prior
that evolves in time. To take into account this time-dependent
prior, a hidden Markov model (DeWeese & Zador, 1998) must be
used: The reward rates and time of change are hidden, whereas the
reward times are observed.

The derivation sketched above leads to a differential equation
for two quantities: the time-dependent probability density distri-
bution for the reward rates before the rate changed, P\(r, t), and
after the rate changed, Pn(r, t). The integrals of these two distri-
butions with respect to r sum to one and the odds that a change has
occurred are given by the ratio of the integrals. Initially, P,(r, t)
has most of the probability whereas P0(r, t) has little. Thus, the

odds that the change has already occurred are small. After the
change in rate, however, the probability shifts progressively to
P()(r, t). As it does, the odds that the change has occurred grow
large.

We can interpret the area under P0(r, t), denoted P0(t) and
defined by P0(t) = / P0(r, t)dr, as the probability that the reward
rate had changed as of any given session time. The question is,
how great was this probability when the rat changed its stay
durations? How strong was the evidence of change that caused the
rat to change its behavior? An estimate of the time at which the rat
changed its expected stay durations is the mode of the earlier pdf
(see dashed arrow labeled mode in Figure 7B). This is the time of
maximum likelihood for the behavioral change. If we denote this
estimate of the time at which the rat made its decision by tc, then
P0(tc) is the probability that the reward rates had changed prior to
that time. This probability is an estimate of the rat's decision
criterion. In Figure 10 we plot the distribution of these estimates.
Note that in 80% of the 118 transitions used, the objective prob-
ability that the reward rates had changed was less than 0.99 at the
moment when the rat decided to change its expected stay dura-
tions. This corresponds to a decision criterion of p < .01 in a
conventional test of a null hypothesis. The data in Figure 10 imply
that the rat made accurate assessments of the evidence for a change
in rates of reward and used a low decision criterion. A stricter
decision criterion would shift the data in Figure 10 to the right
because it would lead to a delayed reaction on the part of the rat.
Any insensitivity on the rat's part to the objective evidence for a
change in rates of reward would also delay its decision.

The data in Figures 8 and 10 suggest that the rat approximates
an ideal detector of changes in the rates of reward; it detects a
change about as soon as it is objectively possible to detect it. We
have already seen that the rat then adjusts to that change about as
abruptly as it could. It shifts from a ratio of expected stay durations
that approximately matches the old ratio of reward rates to a ratio
that approximately matches the new ratio of reward rates in the
span of a few visit cycles.

Rapid Emergence of Abrupt Adjustments

The shift from the prolonged transitions seen in Figures 4 and 5
to the abrupt transitions seen in Figure 6 occurred within the first
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two to four sessions, as may be seen from Figure 11, which shows
the transitions for each subject in the third or fourth session after
the beginning of the relative condition. At this point in the exper-
iment, the subjects had only experienced four or five unsignaled
midsession changes in the relative rates of reward. Thus, a limited
experience with frequently occurring changes in the rates of re-
ward leads to abrupt and complete adjustments to the new rates of
reward at a short latency following the change in programmed
rates.

No Effect of Immediately Preceding Interreward Intervals

If the rats based their estimates of the relative rates of reward
simply on the ratio of the two most recent interreward intervals,
one from each side, then their expected stay durations would
change almost immediately, as we have observed. However, their
expected stay durations would also covary with the large random
fluctuations in the ratio seen during periods when the relative rate
of reward is, in fact, constant. Their behavior would track the noise
in the input. To see whether it did, we compared the distributions
of stay durations observed following different ratios of the two
most recent interreward intervals. This comparison was made
under steady state conditions, that is, during all those portions of

5 10 15 20 25 30 35

Cumulative Time on Side 2 (min)

Figure 11. Cum-cum functions from the third or fourth sessions of the
relative condition. Subject and session number are indicated at the upper
left corner of each panel. The total number of unsignalled midsession
changes in relative rates of reward that a subject had experienced (includ-
ing the Phase 1-Phase 2 transition) is equal to the last two digits of the
session number plus two. The subjects with session numbers in the 200
range had extensive experience with changes in the overall rates of reward;
the subjects with session numbers in the 100 range had no such experience,
at this point in the protocol.

the relative condition sessions where the programmed rates of
reward were fixed at some particular ratio.

To obtain populations of stay durations that were preceded by
different ratios of interreward intervals, we grouped stays on the
basis of binned interreward intervals. For each subject, we pooled
the data from all those portions of a session with a given pro-
grammed ratio of reward rates. Within each of these data sets, we
grouped stay durations on the basis of the immediately preceding
interreward intervals on the two sides, with the interreward inter-
vals themselves binned into intervals 0.2 log units wide. Binning
the interreward intervals was necessary because few intervals are
exactly the same when measured to the millisecond, and so, an
exactly specified ratio rarely recurs. We excluded rewarded visits
from the data because it was unclear how to define the immedi-
ately preceding interreward interval on a given side when there
was a reward in the middle of a stay. Because the grouping of stays
was determined by pairs of preceding interreward intervals—one
from each side—the resulting groups formed cells in a table. The
columns of the table were defined by the duration of the preceding
interreward interval on one side, whereas the rows were defined by
the duration of the preceding interreward interval on the other side.

If the ratio of the immediately preceding interreward intervals
affected the expected duration of a stay—or any property of the
distribution of stays—then the distributions of stays from cells
defined by different immediately preceding ratios of interreward
intervals would be different. To compare the distributions from
cells that differed in this way, we made log survivor plots of the
stays in the different cells. These plots were invariably almost
superimposable, no matter how different the ratio of preceding
intervals defining two cells (Figure 12). Stays that followed an
unusually long interreward interval on Side 1 and an unusually
short interreward interval on Side 2 had the same expected dura-
tion (and, indeed, the same distribution) as stays that followed the
inverse ratio of interreward intervals. Thus, our subjects did not
base their behavior on maximally local and maximally recent
estimates of the expected intervals between rewards.

This result contradicts the conclusion of Mark and Gallistel
(1994), who argued that stay durations did covary with the ratio of
the immediately preceding interreward intervals. They did not,
however, actually measure stay durations and interreward intervals
because their system could not record event times. Their system
logged total times on each side and numbers of rewards on each
side within consecutive narrow windows defined by their software.
These windows often included only one or two stays on each side.
Because there are complex mutual dependencies between the dif-
ferent totals within such windows and significant autocorrelations
(sequence dependencies) from window to window, we suspected
that the strong correlations between the window-by-window ratios
of the time totals and the window-by-window ratios of the reward
totals might have been an artifact of the windowing imposed by
their data recording system. We confirmed this by artificially
windowing the data from the present experiment. We had the
computer apply successive windows to the data series, totaling
time and rewards within each window so as to simulate the manner
in which the older apparatus converted the stream of events into
window-by-window time and number totals.

The ratios of the totals from our artificial windows exhibited the
correlations reported by Mark and Gallistel (1994), although the
analysis reported above of the same data indicated no effect of the
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bin was 0.2 log units less than the longer limit. Stays that included a reward were excluded. Note that the
distribution of stay durations is not affected by the durations of the preceding two interreward intervals nor by
their ratio.

immediately preceding interreward intervals on the expected du-
rations of stays. Thus, the findings that led Mark and Gallistel
(1994) to argue for a dependence of stay duration on a maximally
local sample of the interreward intervals appears to have been an
artifact generated by the totaling of correlated times and response
numbers within very narrow temporal windows.

Spontaneous Changes in Expected Stay Duration

Sometimes a change in behavior anticipates evidence of a
change in the relative rates of reward. This could imply rodent
clairvoyance, but this is not a hypothesis we seriously entertain.
Another explanation for the relatively rare occasions on which the
rat's adjustment precedes the appearance of objective evidence for
a change in rates of reward is that there are spontaneous changes
in the rats' expected stay durations, changes that occur in the
absence of changes in the programmed rates of reward.

There is an example of a spontaneous purely transient change in
the first-transition behavior of Subject A. If one looks closely at
the cum-cum function for this subject on that session (upper left
panel of Figure 2), one sees that almost immediately after the
programmed change in the relative rates of reward, there happened
to be an unusually prolonged stay on Side 1. This appears as a
short vertical jump upward in the cum-cum function. This long
stay on Side 1 is unlikely to have been a reaction to the change in
the experienced rates of reward because it is in the wrong direc-
tion. This long stay made the cum-cum function temporarily
steeper, whereas the asymptotic adjustment provoked by the pro-
grammed change was a decrease in the slope of the cum-cum
function. As a consequence of this one stay, when the strength of
the evidence for a change in behavior is plotted together with the

strength of the evidence for a change in rate of reward (as in Figure
3), evidence for a change in behavior appears to develop well
before the evidence for a change in rate (the initial upward excur-
sion of the thick line in upper left panel of Figure 3), giving the
appearance of clairvoyance.

Spontaneous and relatively enduring changes in the ratio of the
rat's expected stay durations also occur (Figure 13). These are
manifest in clear inflection points that occur well away from the
programmed changes in the relative rates of reward. These spon-
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Figure 13. Examples of spontaneous abrupt adjustments in the subject's
time-allocation ratio (circled). These were common once subjects had
experienced many changes in relative rate.
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taneous changes in the slope of the cum-cum function are some-
times in the direction of better matching, but they are not infre-
quently in the opposite direction: The slope of the cum-cum
function is closer to the slope of the matching line before the
change than after the change. In the Discussion we suggest a model
for the decision process underlying matching that gives a causal
explanation for these seemingly spontaneous enduring changes in
the ratio of the expected stay durations.

Over adjustments

Not infrequently the abrupt adjustments in the relative condition
were overadjustments; the change in the ratio of expected stay
durations was greater than the change in the ratio of reward rates.
Examples are A_l 17 in Figure 6 and A_103, D_203, and K_103 in
Figure 11. This does not appear to be the kind of overshoot that
one sees in an underdamped feedback process, which overshoots
the asymptote at first and converges on it only after diminishing
oscillations about it. These overadjustments are often made almost
immediately after the programmed change in the relative rates of
reward and then persist throughout the remainder of the
semisession.

Discussion

Implications for the Law of Effect

The behavior observed in instrumental or operant conditioning
experiments is widely assumed to develop through a feedback
process in which behaviors are selected on the basis of their
(subjective) consequences (see Williams, 1988, for review). As
Schmajuk (1997, p. 149) put it, "During operant conditioning,
animals learn by trial and error from feedback that evaluates their
behavior but does not indicate the correct response." Rigorous
formulations of this idea are given in the reinforcement learning
literature in robotics and artificial intelligence (Mahadevan &
Connell, 1992; Sutton & Barto, 1998) and in related neurobiologi-
cally oriented literature on learning (e.g., Montague, Dayan, &
Sejnowski, 1996; Schultz, Dayan, & Montague, 1997). A common
way to implement the idea is to have reinforcement history predict
the expected value of each contemplated action. Another way, less
rigorously formulated so far, is to have the reinforcement history
determine the strengths of stimulus-response associations (Lea &
Dow, 1984). In either case, behavior is adjusted by the feedback
effects of prior behavior until a reward function is maximized or
returns are equated, a process we have described as hill climbing.

The principle involved—more frequently choosing in the future
whatever course of action has produced a higher return in the
past—would seem to be central to the rational decision making
generally assumed in economic theory. However, our results are
not consistent with models that implement this principle. If this
kind of model is understood to be what is meant when one says
that behavior has been instrumentally conditioned, then Heyman
(1982) was right: Matching is not conditioned behavior; it is
unconditioned behavior; that is, it is elicited by the animal's
experience of the income ratio, independently of the returns it has
experienced. The adjustments we report occur too soon and go to
completion too rapidly to be produced by a hill-climbing process
driven by changes in returns.

Heyman (1982) showed that the relation between the ratio of a
subject's expected stay durations and the overall return it experi-
ences is a weak one. The adjustment from ratios well away from
matching to matching ratios increases the subject's overall return
by only a few percentage points. This means that the hill being
climbed has a very shallow gradient if the process is driven by
changes in the overall rate of return. If, instead, the system is
searching for the stay duration ratio that equates returns from the
two sides (Herrnstein & Prelec, 1991), then the hill is steeper
because the return from a given side is almost inversely propor-
tional to the time invested in that side. However, the return from a
side varies enormously from visit to visit—see middle panels in
Figure 14. Because returns are so noisy, the effect on returns of a
change in rates of reward takes some while to become evident.
This means that a subject must wait some while before it can
determine whether it has made its returns more or less equal by
changing its expected stay durations. Moreover, it must adjust and
then wait to see the consequences several times to find the new
return-equating locus in behavioral space. The central idea behind
the law of effect in operant conditioning is that reinforcement
evaluates the behavior just performed but does not tell the animal
what to do next (see the Schmajuk, 1997, quote above). We find,
however, that the rat has often completed its adjustment to the new
rates of reward before the change in rates of reward has had a
measurable effect on its returns.

Sidel Side 2
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Figure 14. Top panels: Side-specific cumulative records of reward. Mid-
dle panels: Momentary returns (= I/time on side since last reward on side)
as a function of time on side. Bottom panels: Cumulative number of
departures as a function of cumulative time on side. The slopes of these
curves are the leaving rates. The dashed vertical lines indicate the point in
the session at which the programmed change in the rates of reward
occurred. Data from Subject A, Session 108.
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The top panels in Figure 14 show the cumulative returns for the
two sides, the numbers of rewards obtained as functions of the
cumulative times spent on each of the sides. The slopes of these
two lines are the average returns. They are approximately the same
because matching equates returns. This fact is the basis for the
melioration theory (Herrnstein & Prelec, 1991), according to
which the subject allots ever more time to the side with the higher
return until the returns from the two sides become equal.

The middle two panels of Figure 14 show the momentary
returns on each side—the inverses of the successive interreward
intervals, where those intervals are measured in time on side, not
session time. These momentary returns may be thought of as the
discrete derivatives of the cumulative records—discrete because
they are defined only at the moments when rewards are delivered.
As may be seen in Figure 14B, reward-by-reward returns are
extremely variable, which makes it difficult to determine from
only a few such returns whether there has been a change in the
average return. The bottom two panels of Figure 14 show the
number of departures as a function of the time on each side. The
slopes of these functions are the leaving rates.

The dashed lines extending vertically across all three pairs of
panels in Figure 14 indicate the point at which the programmed
rates of reward changed. Notice the abrupt changes in the leaving
rates that occur immediately after this change in reward rates (the
changes in slopes seen in Figure 14C). The changes in leaving
rates are unlikely to have been produced by changes in the expe-
rienced returns because there are no discernible changes in the
returns (top and middle pairs of panels). Had the subject not
adjusted its leaving rate, changes in the expected returns would
eventually have become manifest. However, the subject adjusted
to match the new relative rates before their effect on its expected
returns emerged from the noise.

We confirmed the lack of significant perturbations in the expe-
rienced rates of return using the frequentist algorithm described
later (see Figure 17) to compute after each reward the log of the
odds that the expected return had changed up to that point. We
compared this with the odds that the rat's expected stay durations
had changed. Within 12 min following the programmed change in
the rates of reward, the odds that the leaving rates had changed
exceeded 1,000,000:1 on both sides (top panel in Figure 15),
whereas the odds that there had been changes in the rates of return
were on the order of 10:1 or less—corresponding to logits with
absolute values less than 1 (bottom panel in Figure 15). These odds
were no greater than those that occurred several times through
random fluctuations earlier in the session, without provoking any
noticeable behavioral adjustments. Thus, the change in leaving
rates is unlikely to have been caused by a change in experienced
returns because it occurred when there was no statistically mean-
ingful evidence of a change in returns.

In a hill-climbing account like melioration (Herrnstein & Prelec,
1991), the subject does not know the ratio of expected stay
durations that will equate its returns from the two sides until it has
found it by (possibly guided) trial and error. It must try first one
stay-duration ratio, determine the effect of that ratio on its returns,
then adjust the ratio, and again determine the effect on its returns,
and so on, until it finds the ratio that equates the returns. In this
kind of model, the adjustment to a new ratio of rates of reward
must be mediated by a sequence of relatively stable (or slowly
changing) stay duration ratios, with successive ratios producing

Subject A, Session 108
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Figure 15. The log of the odds of a change in returns (bottom panel) and
stay durations (top panel) as a function of session minutes for the session
used to make the plots in Figure 14. A logit with absolute value of 6
indicates odds of 1,000,000:1 against the null hypothesis that there has
been no change in rate. The vertical dashed line indicates the time at which
the programmed rates of reward changed.

rates of return measurably different from the preceding rates. In
fact, however, the adjustment may be completed before there is a
measurable effect of the new rates of reward on the rates of return,
which is why there is no perturbation in the slopes of the cumu-
lative records at the top of Figure 14.

As Figure 14 shows, a change in the rates of reward may be
evident in the experienced interreward intervals before it is evident
in the experienced returns because random variation in visit dura-
tions may temporarily mask the effect on returns of a change in
rates of reward. Suppose, for example, that a decrease in the rate
of reward on Side 1 and an increase on Side 2 happen to coincide
with a string of shorter visits on Side 1 and longer visits on Side 2
(shorter and longer relative to the respective expectations). During
the sequence of fortuitously short visits to Side 1, the intervals
between experienced rewards (measured in session time) are
longer than usual because of the change in the rate of reward. The
effects of these longer interreward intervals on the returns expe-
rienced is, however, masked by the fortuitous shortness of the
visits because the returns experienced are the reciprocals of the
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cumulative times spent on that side between rewards, and these
times happen to be shorter than usual. The effect of the increased
rate of reward on Side 2 is similarly masked; the subject experi-
ences unexpectedly short interreward intervals but no increase in
returns because of its fortuitously lengthier visits.

The abrupt and relatively enduring overadjustments often seen
in our cum-cum records are also inconsistent with a hill-climbing
model. A guided hill-climbing model, like the Gauss-Newton
method used in many nonlinear curve-fitting algorithms, might
show an overshoot. Guided search algorithms determine what to
try next on the basis of the magnitude and direction of the change
produced by the previous adjustment. A guided hill-climbing pro-
cess might produce a transient overshoot, but the adjustment back
toward the optimal location should occur as rapidly or more
rapidly than the adjustment that culminated in the overshoot.

The spontaneous, relatively enduring adjustments away from
matching are also inconsistent with a hill-climbing model. Such a
model never leaves the hill top for any length of time, once it has
come to rest there. In short, we believe that a process that selected
stay duration ratios on the basis of the effects that different ratios
have on experienced returns could not produce many features of
our data.

Spontaneous Recovery

Also notable are the reversions to the status quo ante that occur
at the beginning of the next few sessions when there has been a
midsession change in the relative rates of reward following a long
period of stability (Figure 5; see also Mazur, 1996). This phenom-
enon is strongly reminiscent of the spontaneous recovery of a
conditioned response, which is seen at the beginning of a new
session, following a session in which the response was extin-
guished by repeatedly withholding reinforcement (for review, see
Bouton, 1993b). If this reversion to the status quo ante is taken as
one and the same phenomenon as spontaneous recovery, then it
places an additional constraint on models of that phenomenon. The
subjects must in effect remember the previous strengths of their
conditioned responses, the strengths that they had before the rates
of reinforcement were changed. One can no longer think simply in
terms of an excitatory association, created by the original excita-
tory conditioning, and a competing inhibitory association, created
by the extinction experience. A model in which the current
strength or value of a response is determined by running averages
of the excitatory (reinforcement) and inhibitory (nonreinforce-
ment) effects of the responses made does not seem able to capture
what is going on.

Learning to Learn?

The increasingly rapid adjustments to frequently experienced
changes that we observed are reminiscent of learning to learn
phenomena, particularly the rapid reversals in discrimination,
learning that one sees if subjects are given repeated reversal
training (Buytendijk, 1930; Dufort, Gutman, & Kimble, 1956;
Krechevsky, 1932; North, 1950). In the just-cited experiments,
subjects that repeatedly experienced reversal of the reinforcement
contingency rapidly learned to reverse their choice when they
encountered yet another reversal of the reinforcement contingency.
However, the crucial variable, in the present case at least, was not
whether subjects had learned to make rapid adjustments but rather
the duration of the period of stability immediately preceding a
change. After our subjects had (seemingly) learned to make rapid
adjustments to changes in the relative rates of reward, they once
again took a long time to adjust to a change that came after a long
period of renewed stability. It appears not to be a matter of learning
to adjust rapidly. Rather, it appears that the strategy for adjusting
to a perceived change in the rates of reward takes into account the
duration of the preceding period of stability. When the preceding
period of stability is short, the strategy dictates immediate, full
adjustment. When it is long, the strategy dictates a slower, more
cautious adjustment. It should be noted in this connection that the
latency to the onset of the adjustment process is about as short in
the case of the slow adjustments as it is in the case of the rapid
adjustments. It is the time course of the adjustment that changes,
not the time that it takes to initiate it.

The conclusion that subjects adjust very rapidly when changes
are frequent must be qualified by the observation that when the
changes are so frequent that the animal encounters each condition
only very briefly, it may cease to adjust to the changing conditions
and average across conditions (e.g., Dreyfus, 1991, some
conditions).

Elements of a Feed-Forward Model

In a feed-forward model, the mapping from the subject's rep-
resentation of the conditioning situation to its behavior is immu-
table. There is no selection by consequences, hence there is no
need to wait until changes in behavior have observable conse-
quences. Changes in the subject's behavior are the result of
changes in the values of the internal variables that constitute its
representation or perception of its situation. In conditioning exper-
iments, the relevant variables are primarily the temporal parame-
ters of the experimental protocol (Gallistel & Gibbon, 2000).

We assume that to model matching behavior, we need primarily
to specify two perceptual-representational processes and to spec-
ify the response strategies that translate the percepts into behavior.
The first perceptual process estimates the current rates of rein-
forcement. The second detects a change in rates of reinforcement.
The perception of a change causes the first process to reestimate
the rates. The response strategies describe how the two percepts—
perceived rates and perceived changes in rates—are translated into
behavior.

Perceiving and responding to stable rates. Following Gallistel
and Gibbon (2000), who built on earlier work by Myerson and
Miezin (1980) and others (Heyman, 1982; Pliskoff, 1971; Staddon,
1977), we assume that the perception of the current rate of rein-
forcement at each location (on each lever) is the reciprocal of the
arithmetic mean of a small sample of interreward intervals. We
assume that perceived rate combines multiplicatively with subjec-
tive reward magnitude to determine subjective income (Leon &
Gallistel, 1998). Under stable conditions (no recently perceived
change in the rates of reward), perceived incomes translate into
observed stay durations through a stochastic stay-terminating de-
cision process. The stay-terminating process is assumed to be
intrinsically stochastic rather than deterministic because after a
minimum interval, the momentary likelihood of stay termination is
independent of the duration of the stay (Figure 1, see also Heyman,
1982, Figures 3 and 4, and Gibbon, 1995, Figure 4). The expected
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duration, £(4), of a stay on Side i, is the reciprocal of the leaving
rate on that side; the greater the leaving rate, the shorter the
expected duration of a stay.

In the light of our present findings, we assume that the expected
stay durations on the two sides are determined by the following
constraints:

and

E(d1)/E(d2) =

£(«/,) E(d2)
H2) + b,

(1)

(2)

where fit is the subject's estimate of the income on Side i.
Equation (1) says that the ratio of the expected stay durations for
two sides must equal the ratio of the experienced incomes. Equa-
tion (2) says that the sum of the leaving rates on the two sides is
a linear function of the sum of the incomes. Thus, the greater is the
combined income, the higher are both leaving rates and the shorter
are the expected stay durations.

In an earlier formulation (Mark & Gallistel, 1994), the sum of
the leaving rates was assumed to be simply proportional to the sum
of the incomes. However, data from the phase of the current
experiment in which we varied overall rates of reward show that
the relation is in fact nonlinear (Figure 16). Leaving rate saturates
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Figure 16. Overall leaving rates as a function of the overall reward
density in the phase where the scheduled reward rates on the two levers
were equal and the overall reward rate changed at the beginning of each
session and again somewhere in the middle 80 min of the session (Phase 3
or 4, depending on the subject). The abscissa is the actually experienced
reward density, not the programmed density. These densities (overall
reward rates) cluster at three levels because there were only three levels of
programmed overall rate. One regression line has been fitted to the data
from all three levels of overall reward rate, whereas another has been fitted
only to the data from the two lower levels.

as the overall reward rate becomes high. This will necessarily be
the case when there is a minimum stay duration, as there appears
to be (Figure 1). The subject does not, so to speak, start to consider
leaving until it has been on a side some minimum amount of time.
After that, its momentary likelihood of leaving is more or less
constant. Because leaving rates appear to saturate, we calculated
regression lines for all three levels of overall reward rate and for
the two lower levels only—to see whether the line for the two
lower levels would have an intercept significantly different from
zero. In most cases it did. Thus, even if we assume that at lower
overall rates of reward, the relation between overall reward rate
and leaving rate is approximately linear, it is not one of simple
proportionality. It will, however, approximate a proportional law at
low enough rates of reward, where the influence of the nonzero
intercept becomes negligible.

The constraints given by Equations (1) and (2) uniquely deter-
mine leaving rates, given the subject's estimates of the incomes.
The expression for the leaving rates is obtained by solving Equa-
tions (1) and (2) simultaneously to obtain the following:

1
• = o#, + . and

1
W5

(3)

Equation (3) is an example of a mapping from a subject's percep-
tion of its situation (the expected incomes) to its pattern of behav-
ior (average stay durations).

Responding to a perceived change. We suggest that when
rates of reward change frequently, the subject's response to a
perceived change in rates of reward is to make a new small sample
of the interreward intervals immediately following the point at
which it perceives the change in reward rate to have occurred.
When changes are expected because they have recently been
frequent, it immediately uses the rate estimates based on these new
samples as the sole determinants of its stay durations.

On this model, spontaneous but enduring small changes in the
ratio of the expected stay durations occur whenever the subject
erroneously perceives a change in a rate of reward. The erroneous
perception of a change in rate causes it to reestimate the rates.
Small sample variability tends to make the new estimates differ
appreciably but unsystematically from the old estimates. This
would produce spontaneous but relatively enduring changes in the
ratio of the expected stay durations, which are a clear feature of our
data (Figure 13).

When there has not been an unequivocal change in rates of
reward for a long time, then the subject does not immediately use
the new samples as the sole determinants of its stay durations.
Rather, the determinants of its new stay durations represent a
compromise between the previous rates of long duration and the
newly perceived rates, which have only been in effect for a short
while. We do not attempt to specify the quantitative form of this
compromise between the results of extended past experience and
short but recent experience.

The reversions to the status quo ante that we and others observe
imply that estimated incomes prior to perceived change points are
not forgotten. They are kept in memory and may regain control of
behavior under some circumstances. One such circumstance is at
the beginning of a new session following a session in which there
was an unprecedented or highly unusual change in the rates of
reinforcement. In such a situation, it is inherently ambiguous
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which is the better predictor of the incomes to be encountered at
the start of a new session—those that prevailed during the latter
part of the preceding session or those that prevailed for many
sessions up to and including the beginning of the immediately
preceding session.

A complete feed-forward model will have to have decision rules
to deal with the case in which past sessions give ambiguous
indications of what to expect in the new session. Devenport (1998)
and collaborators (Devenport, Hill, Wilson, & Ogden, 1997) have
proposed a temporal weighting rule, whereby animals weight
conflicting experiences on the basis of their relative extent and
recency. The extensive literature on spontaneous recovery after
changes in temporal context may be taken as further evidence that
the relative duration and recency of the experiences on which
income estimates are based are themselves important determinants
of behavior (Bouton, 1991, 1993a, 1993b).

Perceiving a change. In modeling the change-detecting pro-
cess, we sought a simple real-time calculation yielding a decision
variable sensitive enough to the information in the sequence of
rewards to make the subject approximate an ideal detector. De-
tecting a change in a random rate is equivalent to detecting a
change in the slope of the cumulative record, which is the plot of
the number of events as a function of elapsed time (Figure 17).
Assume that the observation of events begins at time t0, which is
the time of occurrence of the event number, n0. Let / > t0 be a
subsequent point in time, T = t — t0 be the interval of observation,
and N > 0 be the number of events observed in that interval,
including the event, if any, at t, but not including the event at t0. If
the rate has been constant, then the cumulative record approxi-
mates a straight line, with slope N/T (see, for empirical examples,
the top panels in Figure 14).

If the rate has changed somewhere within the interval of obser-
vation, then the cumulative record will have an inflection point
where it changed. Let rc be the time at the inflection point and nc

the event count. If there is an inflection point in the record, then its

LLJ

Elapsed Time

Figure 17. A cumulative record of events (cumulative number of events
vs. time on the clock). So long as the average rate of event occurrence
remains constant, this function will approximate the dashed straight line.
When the rate changes, there is an inflection point (IP), with coordinates
</c> nc).

location may be estimated to be the point at which the record
deviates maximally from a straight line (rfmax in Figure 17).
Because the cumulative record is incremented in discrete steps,
this point always coincides with an event. Let T3 = t — tc be the
interval since the putative inflection point and M, be the number of
events observed after that point.

On the null hypothesis that the events are randomly distributed
in time, the probability, pe, that any one of the events (ignoring
event order) falls in the interval Ta is TJT. The probability Pf of
observing JVa or fewer events is given by the cumulative binomial
probability function, as is the probability Pm of observing Na or
more events. When the number of events in Ta is approximately the
expected number, then the ratio /VPm is approximately unity and
the log of this ratio is approximately 0. As the observed number of
events since the putative time of change becomes improbably low,
the ratio becomes very small, and its log approaches minus infin-
ity. As the observed number becomes improbably high, the ratio
becomes very large, and its log approaches infinity. The absolute
value of the log of this ratio (the logit2) is our proposed subjective
measure of the strength of the evidence that there has been a
change in rate. When this quantity exceeds a critical value, the
subject perceives a change. When the subject perceives a change in
a rate, it truncates the data at the moment the change is perceived
to occur (the moment rc in Figure 17). The data on which the next
perception of a change in rate is based are only those after this
moment.

To check whether our model for the computation of the decision
variable underlying change perception approximates the behavior
of an ideal detector, we plotted our measure against the real-time
odds for a change calculated by the Bayesian formula in the
Appendix (A13a/A13b). Figure 18 compares the values of our
measure with the value from the Bayesian calculation when ap-
plied to representative reward and stay duration data series. To a
good approximation, the Bayesian measure of the strength of the
evidence for a change and the frequentist measure provided by the
above described algorithm differ only by a scaling factor. Thus,
our model of the change-detecting process satisfies the require-
ment that it approximate the performance of an ideal detector. We
used this algorithm to compute the evidence for a change in
expected stay durations and the evidence for a change in expected
returns in Figure 15.

Conclusions

The short latency at which subjects begin to adjust their ex-
pected stay durations in reaction to changes in the relative rates of
reward and the abruptness of these adjustments when such changes
are frequent imply that matching behavior is not the result of a
learning process that selects behaviors on the basis of their con-
sequences. The locus of reinforcement's effect is not in the map-
ping from perceived situations to actions nor in the mapping from
actions to the amounts of reward they are expected to produce;

2 The logit is usually defined to be the ratio of two complementary
probabilities. Our ratio is between two overlapping probabilities, which
therefore do not sum to 1. We use overlapping probabilities because the
resulting measure is better behaved when the expected and observed
numbers of events are the same and near or equal to zero. Away from unity
or when the expected number of events is i£> 0, our ratio approximates the
usual ratio.
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Session Minutes

Figure 18. The results from our frequentist model of the change-
detecting process (Freq curves) compared with the results from the Bayes-
ian formula (Bayes curves, calculated with Formula A13 in the Appendix),
using data on the changes in the experienced rates of reward and answering
changes in the rat's stay durations from Session 110 of Subject A. beh =
behavior; rwd = reward.

rather, it is in the subject's representation of income histories. That
representation determines its behavior via a seemingly immutable
decision process (Herrnstein, 1991). Feedback effects may be
relevant only insofar as they alter this representation.3

A pigeon or rat learns to peck a key or press a lever for food
reinforcement simply by observing the contingency between the
illumination of the key or the appearance of the lever and the
delivery of food, regardless of the effect its own behavior does or
does not have on food delivery (Brown & Jenkins, 1968). It
responds to the perceived contingency even when its response
causes the omission of the reward it would otherwise receive
(Williams & Williams, 1969). Thus, the mere perception of a
stimulus-reward contingency can elicit seemingly instrumental
behavior directed toward the stimulus. We have now shown that
the perception of the incomes to be expected elicits matching
behavior. Thus, both the appearance of conditioned responses and
their relative strengths may depend simply on perceived patterns of
reward without regard to the behavior that produced those rewards.

These findings raise the question, under what circumstances is
instrumental behavior formed through a process of selecting be-
haviors on the basis of their consequences? That the effects of an
animal's past behavior are important determinants of its future
behavior is beyond dispute. However, this influence of past effects
on future behavior need not arise from the fact that the relevant
experiences were consequences of the subject's behavior. The
behavior may have served only to reveal aspects of the environ-
ment that the animal would not otherwise have experienced. Un-
less it samples a location, an animal cannot know what to expect
there. However, the behaviorally important expectation need make
no reference to the sampling behavior itself. The distinction be-
tween income and return is the distinction between an expectation
whose computation does not depend on knowing what behavior
produced the outcomes and an expectation whose computation
does require such knowledge. We have shown that matching is
driven by the former. This explains why matching is observed

under group conditions where all subjects have observed the rates
at which food is delivered to two different patches, but most
subjects have not yet succeeded in obtaining food from one or both
patches (Harper, 1982).

At least the following variables appear to be crucial determi-
nants of matching behavior: (a) the currently prevailing incomes
(amounts of reward per unit of session time), (b) whether there has
been a recent change in the incomes, (c) the recency of that
change, and (d) the duration of the period of stable incomes
preceding the change.

The process that detects changes in rates of reward approxi-
mates an ideal detector, which implies that the subjective likeli-
hood that there has been a change approximates the objective
likelihood. To approximate an ideal detector of changes in rate, a
subject must remember the sequence of interevent intervals lead-
ing to the present moment.

3 The pure feed-forward view does not preclude feedback effects be-
cause the animal's behavior may affect the interreward intervals that it
experiences. If, for example, the animal samples a given option only at
longer and longer intervals, then it will necessarily experience rewards
from that option only at longer and longer intervals, so the income from
that option will go down. In cases where feedback from behavior to
experience is demonstrably important, the question concerns the locus of
the effects of this feedback. Is the locus a change in the experienced
income? Or is it a change in the mapping between experienced stimulus
situations and response outputs? The law of effect asserts the latter: It
asserts that the effects of behavior alter the mapping from experienced
stimulus situations to response outputs. This is also the assumption in the
reinforcement-learning approach to complex decision making in artificial
intelligence and comparable analyses in economic decision theory. In all of
these different domains, it is assumed that the locus of the agent's adjust-
ment is in his response strategy, that is, his decision process, rather than in
his representation of the situation-defining variables (his model of the
relevant aspects of the world).
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Appendix

Optimal Estimation of Rat Behavior by the Observer and of Reward Rates by the Rat

A major goal of this article is to determine how well a rat responds to a
change in reward rates compared with how well it could respond in
principle. There are two parts to this problem. The first is to determine
what we mean by in principle; that is, what is the fastest any observer could
detect a change in reward rates, given that those rewards appear randomly.
The second is assessing whether the rat detected the change; our only way
of doing that is by observing the rat's behavior—specifically, the stay
durations on one side of an experimental apparatus—which itself is a
random process.

These two problems share a common feature in that both involve
detection of a change in a random process. There is, however, one major
difference. To assess when a rat changes its behavior, we can examine
data over an extended period; that is, we can make our decision on the
basis of knowledge of all stay durations. The rat, however, has a more

difficult problem: it must make its decision in real time, only on the
basis of reward times that it has seen so far, not on all reward times.
Moreover, it must decide not only when a reward rate changed, but what
it changed to.

We address first the problem of finding the time at which a rat changed
its behavior given all stay durations; after that, we tackle the problem of
estimating changes in reward rates in real time.

Determining When a Rat Changes Its Stay Durations,
Given All the Data

To make inferences about changes in a rat's stay durations, we need a
model for the statistics of those durations. On the basis of the experimental
data (see main text, Distributions of Stay Durations), to a good approxi-
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mation stay durations are exponentially distributed. Consequently, the
times at which a rat leaves a side follow a Poisson process. Our problem,
then, is to determine when a Poisson process undergoes a change in rate,
given that we have access to all the data. We formulate this problem as
follows: At time t = 0, a Poisson process is initiated, in which events are
generated at rate r0. At time ta the rate changes to r,, and at t = T the
events stop. Given the event times, denoted t = ?,, t2, • • • , we want to
know when the rate changed from r0 to rl. Because we cannot know the
exact time at which the rates changed, the best we can hope for is the
probability distribution of tc In other words, we want to construct the
conditional probability distribution P(tc\t).

Our strategy is to use Bayes' theorem to compute P(tc, r0, r,|t), the
probability density of observing rates r0 and r, before and after time tc,
respectively, then integrate over r0 and rl to find P(tc\t). Bayes' theorem is

P(r0, n, tc\t) =
P(t\ra, rt, tc)P(ra, rt, tc)

P(t)
(Al)

We are using the potentially ambiguous notation that a probability distri-
bution is specified by its arguments, but in all cases what we mean should
be clear from the context.

To determine P(r0, rlt fc|t), we need expressions for the two terms in the
numerator on the right hand side of Equation Al. Let us begin with P(t\r0,
r,, tc), the probability distribution of the event times given that the rate is
r0 when ( £ tc and r, when t > tc Because events are generated by a
Poisson process, the probability of observing a particular set of event times,
t, depends only on the number of events that occurred before time tc and
the number that occurred after tc We denote those two numbers 10 and /,,
respectively. Then, discretizing time into bins of width Af, small enough so
that each bin is overwhelmingly likely to contain at most one reward (we
eventually let Af —» 0), we have

P(t|r0, r,, tc) = (A2)

The quantity (r0Ar)'° is the probability of observing events occurring in /0

time bins of width Ai, whereas (1 — r0Af)'</A'~l'> is the probability of no
events occurring in the remaining /^Af - /„ bins. Identical logic applies to
the third and fourth terms in this expression. For small enough Ai, Equation
A2 becomes

P(t r0, r,, tc) (A3)

where we used (1 - af)b/l+c —> e ab in the limit e -* 0. The constant of
proportionality that relates the left and right hand sides of Equation A3 is
determined later.

To complete our expression for P(r0, r,, /c[t), we need the priors—the
probability of leaving rates and the time at which a change occurred, both
in the absence of any data. Although the true priors are known from the
experiment, for this calculation it is sufficient to use flat priors, P(r0, r,,
tc) = constant. This is because the conditional distribution, P(t|r0, r,, tc),
quickly becomes sharply peaked as soon as there is even a small amount of
data, rendering the priors more or less irrelevant. With flat priors, we can
insert Equation A3 into Equation Al to yield

Integrating over both r0 and r, from zero to infinity, we arrive at the
expression for our desired quantity, P(tc\t),

1 W
(A4)

- f
- J

Adtc (A5)

In both Equations A4 and A5, /„ and /, depend on tc as well as the event
times, t. The integral in the latter equation must be done numerically, once
the data is given. In practice, to avoid infinities in the tc —» 0 and tc-*T
limits, we set the lower and upper bounds on the integral to correspond to
the first and last event times.

Equation A4 is the probability distribution of a change in reward rate
given a complete set of event times, t. We now address the problem of
finding the probability that a change in rates has occurred, and what the
new rate is.

Determining, in Real Time, When the Reward Rates Change

The problem faced by the rat is to collect the reward times—the
data—up to a certain point in time and then generate a probability distri-
bution for the actual rate of rewards given that data. We assume that
rewards are generated according to a Poisson process (although this is not
quite true in the experiments), so we can state our problem as follows: At
time t = 0, rewards started appearing, and we have been observing those
rewards between t = 0 and t = tf. Rewards appear first at rate r0 and, at
time tc, change to rate r,. The reward rate can change at most once; that is,
there is only one value of tc Of course, tc may be greater than tf, in which
case the change in reward rate will not have been made during our
observation time. Our goal is to construct the probability distribution for
the reward rates before and after the change in rate.

Notice that the previous method cannot be applied directly; we cannot
simply replace T by ly in Equation A4. This is because there is a finite
probability that the reward rate has not changed at time tf, a possibility that
was not taken into account in deriving Equation A4. Instead, we use the
method described by DeWeese and Zador (1998), which casts the problem
in terms of a hidden Markov model. The idea is as follows. As above, we
start by discretizing time into small bins of width Af. Let rt be the rate in
interval i and s,, = {0, 1} be an indicator of whether (s, = 1) or not (s, =
0) a reward was left. Let xt indicate whether or not the reward rate has
changed: *, = 1 indicates that there has been no change, and *, = 0
indicates a change has taken place. This indicator is needed because
rewards change at most once. The method outlined in DeWeese and Zador
(1998) is to compute Pfa, Jr,-|s;s,-)—the probability that the reward rate is
r,. and the rate has (or has not) changed, given observations of all rewards
up to interval i—as a functional of Pi_l(ri^l, x,_,|.Sys,_,). We can then
iterate, starting at i = 0, to find Pt for any index i. The subscript on the
probability distribution reminds us that P, and Pj are different if i =£ j.

In the experiments, the rewards follow (approximately) a Poisson pro-
cess, and the decision to change the rewards is independent of reward
times. This leads to two observations:

1. Whether a reward is left in interval i depends only on the reward rate,
rt, in that interval.

2. The reward rate, r,, and indicator *,-, in interval i depends only on the
reward rate and the indicator in the previous interval; that is, they depend
only on r,_, and */_].
These observations allow us to determine how Pfft, xtSjSj) depends on
PI- i(r,-_1, Xj_, sjsi_,). We start with the well-known relation between joint
probability distributions and conditional distributions,

Pi(rlt x,, i,si) (A6)

where the constant of proportionality, ft, satisfies

Because s, depends only on r, (Observation 1), the first term on the
right-hand side reduces to P,(s,|r,). The second term can be recast using
Observation 2: In the absence of knowledge of s,, r,, and xt depend only on
r,._, and Xf_,. Thus, the second term becomes

(Appendix continues)
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I r,_!, *,_,)/>,_,(?-,_„ x,-i, (A7)

Combining Equations A6 and A7 and again turning joint distributions into
conditional ones, we find that

i(r,, x,\sisi)

(A8)

where Z is the normalization, chosen so that X,. / drf/ir,, AC,- ,̂.) = 1, and
we have dropped the subscripts on both P(s,\rl) and P(r(, JCj|r,._,, AT,-,)
because neither depends on the time interval.

To implement Equation A8 for a particular problem, all we need to do
is write down expressions for P(st:r,) and P(rt, xi\ri_l, xt_t). Because
rewards are left according to a Poisson process, the first of these may be
written

P(st\r,) = (1 - r (A9)

where Sy is the Kronecker delta: Stj = 1 if i = j and 0 otherwise. To
determine P(rt, AT,-r,._,, x,_i), we need to know how reward changes are
distributed. In the experiments described in the main text, the probability of
a reward change is uniform over a fixed interval. Were we to strictly follow
this prescription, the probability of a reward change would steadily in-
crease. It is unlikely, however, that the rat has such a sophisticated model.
Instead, we assume that the probability of a change is fixed in any interval
at i>Af provided no change has occurred (AC, = 1) and is zero if a change has
occurred (*, = 0). Thus,

P(r,, Xi r,_,, x,-,) = (1 - Ac f_,i>Af)S(r,- - r,-,

(A 10)

where g(rf) is the probability distribution of a new rate given there was a
change in rates and, in this expression, 8(r) is the Dirac 8 function. The first
term on the right-hand side of Equation A10 ensures that r, and x, only
change once (AT, = 0 if a change has taken place); the second term allows
a change in reward rate, with probability vAf, given that no change has
taken place so far.

To derive an update rule, we simply insert Equations A9 and A10 into
A8 and perform the integral over r,_, and the sum over AC,-_I. We do this
in steps, starting with the integral and sum. Using Equation A10, we have

J
dr'P(r,xr',x')Pi-t(r',x')

i,.o I dr'P^(r', 1).= (1 - xvb.t)P:-i(r, x) + vAfg(r)S,.

Then, using this expression and Equation A9 for P(s\r), Equation A8
becomes

P,(r,x) = -[(l -Z
rA/8,,]

8*0 I <*>'P,_,(r', 1) .

Note that we have dropped the subscript i on r, x, and s, as these are now
dummy variables. To lowest order in Ar, this expression simplifies to

P,(r, x) = - S,.o /Wr, AC) - Af (r + *»<)P,_,(/-, A:)

f8,0 dr'P^r',
J

- "g(r)8,0 dr'P^r', 1) + - SslAfr.P,_,(r, x), (All)
J JJ Z

from which we find that Z = 8s0[l - rAf] + 8slrAf, where

drrPt-^r.x).

Inserting this expression for Z into Equation All and again working to
lowest order in Af, we arrive at

,(r, x) = S,0 />,_,(r, x) - Af (r - r +

•M) +S,.,r/'j-1(r,jC)/r.

In the limit Af —» 0, this may be cast as a differential equation,

dP(r, x)
-= -(r- r+ xv)P(r, x) , I dr'P(r', 1)

', - tk)P(r, x)~ , (A12)

where tt is the time of the kth reward.
Finally, it is convenient to break Equation A12 into two equations, one

' „, ,^ . , ..for P0(r) = P(r, 0) and one for P,(r) = P(r, 1), yielding° '

8°°'r' _ _/ _ -\p ,\ + vgir\ dr'Pt(r')

8(f - tt)P0(r)

dt 2>-

(A13a)

(A13b)

Equations A13a and A13b contain the probability distributions for the
reward rates both before (Pt) and after (P0) there has been a change in the
reward rate. Initial conditions are chosen so that P^r) = g(r) and
P0(r) = 0, where g(r) = llrmta. when r £ r^ and 0 when r > rmal. The
maximum reward rate, rmax, is chosen to be larger than any reward rate
likely to be seen by the rat. The odds that there has been a change in rate
is simply given by / drP0(r)/f drP^r).
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