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Uncovering the directionality of coupling is a significant step in understanding drive-response relationships
in complex systems. In this paper, we discuss a nonparametric method for detecting the directionality of
coupling based on the estimation of information theoretic functionals. We consider several different methods
for estimating conditional mutual information. The behavior of each estimator with respect to its free parameter
is shown using a linear model where an analytical estimate of conditional mutual information is available.
Numerical experiments in detecting coupling directionality are performed using chaotic oscillators, where the
influence of the phase extraction method and relative frequency ratio is investigated.
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I. INTRODUCTION

Cooperative behavior of coupled complex systems has re-
cently raised much interest in the scientific community �1�,
since synchronization and related phenomena have been ob-
served not only in physical but also in many biological sys-
tems. Examples include cardiorespiratory interaction �2–7�
and the synchronization of neural signals �8–12�. In such
physiological systems it is important not only to detect syn-
chronized states, but also to identify drive-response relation-
ships. Several indices detecting the directionality of coupling
have been proposed. For example, Schreiber �13� proposes to
compute the transfer entropy, based on the Kullback entropy
measuring the deviation of the transition probability density
function �PDF� from the generalized Markov property. In
Refs. �14,15� the authors propose to approximate functional
relationships between the instantaneous phases of interacting
oscillators using their Fourier expansions, and compute a
normalized “directionality index.”

Other approaches include various cross-prediction meth-
ods which attempt to directly exploit Granger’s ideas on mu-
tual forecasting of series generated by coupled linear systems
�16�. However, opposite opinions exist on how to interpret
the cross-prediction accuracy, e.g., in Ref. �8� the authors
hypothesize that the average cross-prediction error is smaller
in the driving system while in Ref. �9� it is suggested that the
cross-prediction error should be smaller when predicting the
driven system.

In this paper, we present a nonparametric method of de-
tecting the directionality of coupling based on information
theory. The method involves estimating a well-known infor-
mation theoretic functional—the conditional mutual informa-
tion �CMI� �17�. There is a multitude of ways to estimate the
CMI �18�. We select some of them and compare them from
two standpoints: estimator bias on a linear model and correct
detection rates on a pair of chaotic oscillators with known
coupling parameters.

When processing experimental data the situation is quite
complicated. Measurement noise and limited length of ex-
perimental time series can be sources of considerable addi-
tional variance in the estimates. Different statistical and dy-
namical properties �stochasticity, dominant frequencies� of
the two underlying systems can cause severe bias in esti-
mates of directionality indices. We show how it is possible to
alleviate these effects to a large extent by testing the com-
puted indices using sets of surrogate data �19,20�. Neverthe-
less, it should be noted that inferring directionality in sys-
tems with very different properties remains a much more
difficult problem than inferring directionality in similar sys-
tems.

The paper is organized as follows. The Introduction con-
tinues with a brief overview of relevant concepts of informa-
tion theory, the problem of detecting coupling directionality
in general, exploiting phase dynamics in particular, and
closes with the problem of significance testing. The next sec-
tion introduces some prospective methods of estimating in-
formation theoretic functionals. Two experimental sections
detailing the setup and results of several numerical experi-
ments follow, and the last section contains a discussion of the
experimental results.

A. Brief introduction to Information theory

Quantities based on information theoretic functionals
have enjoyed an important position in detecting relationships
between complex systems partly due to their nonparametric
nature, which makes them widely applicable. In this section
a brief introduction to the basic functionals is given.

Consider discrete random variables X and Y with sets of
values � and �, respectively, probability distribution func-
tions p�x�, p�y�, and the joint PDF p�x ,y�. The Shannon
entropy H�X� is defined as

H�X� = − �
x��

p�x�log p�x� . �1�
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H�X,Y� = − �
x��

�
y��

p�x,y�log p�x,y� �2�

for discrete sets � and �. It is straightforward to extend the
definition to more than two variables. The conditional en-
tropy H��Y�X� of Y given X is

H��Y�X� = − �
x��

�
y��

p�x,y�log p��y�x� .

The average amount of common information contained in
the variables X and Y is quantified by the mutual information
I�X ;Y� defined as

I�X;Y� = H�X� + H�Y� − H�X,Y� . �3�

The conditional mutual information I��X ;Y�Z� of the vari-
ables X,Y given the variable Z is given as

I��X;Y�Z� = H��X�Z� + H��Y�Z� − H��X,Y�Z� , �4�

I��X;Y�Z� = I�X;Y ;Z� − I�X;Z� − I�Y ;Z� , �5�

I��X;Y�Z� = H�X,Y� + H�X,Z� − H�Z� − H�X,Y,Z� , �6�

all of which are theoretically equivalent. However, depend-
ing on the method used to compute entropy or mutual infor-
mation, some of the above formulas will be more appropriate
than others in particular situations.

Entropy and mutual information are measured in bits if
the base of the logarithms in their definitions is 2. In this
work the natural logarithm is used and therefore the esti-
mates are given in nats.

B. Detecting coupling directionality

Most causality detection methods available today are
based on the Granger causality concept �16�. Given two time
series, one of them Granger-causes the other one if the infor-
mation provided by it helps in forecasting the second series.
A generalized version of the above statement is that, if the
time series generated by one process provides us with infor-
mation on the time series generated by another process at
some point in the future, the first process influences the sec-
ond process. If only two processes are involved and coupling
is detected exclusively in one direction it is inferred that the
first process causally influences the second process. Granger
has applied his principle to coupled linear models �16�. In
Ref. �21� it was demonstrated that using changes in cross-
prediction errors to indicate the directionality of coupling is
not trivially extensible to nonlinear systems. For nonlinear
systems, methods based on information theory have been
shown to be widely applicable, especially when the estima-
tors of the relevant information theoretic functionals are non-
parametric and thus applicable to any PDFs �usually under
some mild technical assumptions�.

Let X and Y denote two stationary ergodic processes and
x�t� and y�t� their time series. The presented method of de-
tecting coupling directionality uses conditional mutual infor-
mation as an indicator of the presence of net information
flow �22� between the two analyzed systems characterized by

their respective time series. The net information flow
I��X ;��Y�Y�, where ��Y is an observable derived from the
state of the process Y � steps in the future, is defined as the
mutual information between X, Y, and ��Y that is not a result
of the action of the history of process Y on itself, i.e., ex-
cluding I�Y ;��Y�, and is also not the result of the common
history of the two processes captured by I�X ;Y�. A statisti-
cally significant information flow thus indicates that informa-
tion is being transferred from the process X to the process Y
at some later point in time. This can be readily interpreted as
an influence of the process X on the process Y in the future.
The detection criterion is based on two indices

iX→Y =
1

N
�
�=1

N

I„�x�t�;��y�t��y�t�… , �7�

iY→X =
1

N
�
�=1

N

I„�y�t�;��x�t��x�t�… , �8�

where the notation

I„�x�t�;��y�t��y�t�…

denotes mutual information between x�t� and ��y�t� condi-
tioned on y�t�. The operator �� represents the difference

��x�t� = x�t + �� − x�t� .

The series x�t� and y�t� can contain the values generated by
the respective systems or values which have been derived
from the original time series. In general, each of the time
series x�t� and y�t� should be considered multivalued. This is
the case if state space reconstruction techniques �23� are ap-
plied prior to computing the information theoretic function-
als �21�.

C. Exploiting phase dynamics

In the special case where the systems generating the time
series x�t� and y�t� can be considered oscillators, it is in
many cases advantageous to extract the phase of each of the
systems. The phase of a chaotic system is in general not
uniquely defined �24�, and several methods of extracting a
phase exist. If phases form the basis for further analysis, it is
usually not necessary to perform state space reconstruction
of the observables: univariate series effectively describe the
state of each system �21�. The series x�t� and y�t� in Eqs. �7�
and �8� are univariate and the �� operator is the phase dif-
ference. In this paper the “wrapped” definition of the phase is
used so that x�t� ,y�t�� ��0,2���. In the following sections,
we describe some frequently used methods for obtaining the
phase from univariate signals.

1. Hilbert transform

A commonly used approach involves the Hilbert trans-
form, which extracts the phase of the system using the ana-
lytical signal concept �25�,

��t� = s�t� + js̃�t� = Aej��t�,

for which the phase can be unambiguously defined as ��t�.
The function s̃�t� is the Hilbert transform of s�t�,
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s̃�t� =
1

�
P	

−	

	 s�t�
t − �

d� .

The method has been applied directly to signals with broad-
band spectra �26�; however the physical meaning of the time
series thus extracted is unclear �27�. The phase extracted
using Hilbert transform can be readily interpreted if the
source system has a clear main frequency of oscillation. Al-
ternatively, the signal can be processed with a narrowband
filter, but care must be taken not to disrupt the phase spec-
trum of the signal. This can be difficult in on-line or real-
time settings, as common finite impulse response filters have
a frequency-dependent phase shift �e.g., Butterworth filters
have a phase shift that is linearly dependent on the fre-
quency�. The Hilbert transform can be computed efficiently
in the frequency domain by manipulating the phases of the
Fourier transform of the signal. Alternatively, the computa-
tion can be done in the time domain as a convolution

s̃�t� = s�t� �
1

�t
,

also yielding the complex part of the analytical signal.

2. Wavelet transform

Another method consists of extracting the complex part of
the analytical signal by convolving a �possibly broadband�
signal with a wavelet such as the complex Gabor wavelet
�27–29�, defined as

G�t, f� = exp
 t2

2
t
2�exp�j2�ft� ,

where 
t defines the spread of the wavelet and f defines its
frequency. Some authors recommend selecting 
t based on
the frequency, e.g., as 
t=7 / f �28�, to obtain a fixed number
of periods of the signal at the given frequency. Convolving
the filtered signal with the complex Gabor wavelet above
yields the complex part of the analytical signal similarly to
the Hilbert transform approach,

s̃�t� = s�t� � G�t, f� .

Le Van Quyen et al. �27� have shown that in many cases both
of the above phase extraction methods provide similar re-
sults. The phase series extracted using the analytical signal
concept is sampled at the same frequency as the original
signal; this is sometimes called the instantaneous phase.

3. Marked-events phase

A completely different method which provides informa-
tion on the phase at discrete time instants is the marked-
events method �1,7�. The marked-events method requires
that an event which occurs once per period at a well-defined
time instant is detected with the highest possible precision.
The phase is linearly interpolated between each two neigh-
boring detections:

��t� = 2�
t − tk

tk+1 − tk
,

where t1 , t2 , . . . is the sequence of time instants when the
selected event has been detected. Such an event may be, for
example, the R peak of an electrocardiogram �ECG signal�,
which can be detected with high temporal precision. The
marked-events phase is also useful if other definitions of
phase prove difficult to apply �e.g., when analyzing a neural
spike train�.

D. Testing the significance

The indices iX→Y and iY→X are generally difficult to inter-
pret without additional information about the underlying sys-
tems. For structurally similar systems, it is possible to com-
pare their numerical values; however, the indices may exhibit
significant bias that is different in each direction if the gen-
erating systems vary widely in their dynamics or in some
system parameter such as the main oscillation frequency
�21�.

A possible solution to this problem is provided by testing
the computed indices using surrogate data sets �19,20,30�.
Surrogate testing has been used in detecting nonlinearity �31�
and synchronization �32�. A surrogate data set is a set of
synthetically generated time series which ideally preserve all
the properties of the underlying systems except the one that
is being tested. It is usually a nontrivial task to generate
surrogate data for a particular detection problem as the de-
tails of the procedure depend on the type of data available
and on the detection problem. When testing for directional-
ity, the surrogates should replicate the dynamics of both sys-
tems but break any existing coupling between them. The
main technique applied today to reach this effect is altering
some of the temporal structures of the time series so that �if
the systems are coupled� cause and effect are separated.

Irrespective of the particular surrogate generation method,
the significance test is a standard one-sided hypothesis test.
The null hypothesis is that the two systems are independent
and by using evidence in the time series an attempt is made
to reject this hypothesis. Assuming that a bivariate time se-
ries is available, the test is performed as follows. The indices
iX→Y and iY→X are evaluated on a predetermined number of
surrogate data sets generated from the bivariate time series,
whence an estimate of the cumulative distribution function
�CDF� of each index can be obtained. This distribution rep-
resents the variability of the directionality indices iX→Y and
iY→X for independent systems �i.e., under the null hypoth-
esis�. For an a priori selected level of significance, typically
5%, it is possible to obtain critical values for the indices
from both of the CDFs. The critical values are used as a limit
in a one-sided test for significance. If the value of the index
obtained from the original �possibly coupled� bivariate time
series is above this critical value, it is significant at the cho-
sen significance level, and directional influence in the direc-
tion corresponding to the index has been detected. If the
value of the index is not significant, then the evidence in the
time series does not support rejecting the null hypothesis of
no coupling in the given direction.
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If the generating systems do not vary with time, it is pos-
sible to compute thresholds from the surrogates which ensure
detection of directional influence at given levels of signifi-
cance. Some frequently used surrogate generation methods
are described in the following sections.

1. Fourier transform surrogates

Fourier transform surrogates are constructed by comput-
ing the Fourier transform of each signal, randomizing the
phase of each frequency component �except the dc compo-
nent�, and then taking the inverse transform. In practice this
is accomplished by computing the fast Fourier transform
�FFT� �33� of the time series and there are many software
packages available that provide required procedures. The au-
tocorrelation function and spectrum are preserved but the
distribution of amplitudes is usually slightly flattened �20�.
Further improvements on the basic method try to iteratively
converge upon surrogates that more accurately match the
original frequency spectrum and the original amplitude dis-
tribution at the same time �19�.

2. Permutation surrogates

Permutation surrogates have been previously applied to
time series obtained using the marked-events method �7,34�.
The sequence of durations �intervals� of each cycle of the
time series is first extracted. The intervals are then randomly
reordered and a new phase time series is constructed based
on the reordered sequence. The process is repeated until the
desired number of surrogate time series is obtained.

For instantaneous phase, essentially the same procedure
applies but care must be taken to preserve the intraperiod
information in the signal. The signal is first divided into pe-
riods and all the periods except the first and last are permuted
randomly. The first and last period are not displaced, because
this would create discontinuities in the surrogate signal, as
usually only a part of the first and last period is available.
The distribution of phases is preserved when this method is
applied.

This procedure has been applied in the present work as
the comparison includes methods which are dependent on
the distances between data points, so that it is important to
preserve the distribution of phases as accurately as possible.
We note that permutation surrogates differ from the “white
noise” or “scrambled” surrogates where the time-series
samples are simply reshuffled randomly, yielding a time se-
ries which preserves the distribution but completely destroys
any correlations in the time series.

3. Twin surrogates

Recently the technique of analyzing nonlinear dynamical
systems using recurrence plots �35,36� has gained some
popularity. Recurrence plots �RPs� indicate instances of time
when the trajectory of the dynamical system passes close to a
point it has visited previously. A recurrence plot of a process
can be used to construct twin surrogates �37� by exploiting
special points that are equivalent with respect to the recur-
rence plot. A twin surrogate is a time series which is con-
structed by reordering segments of the original time series so

that the reordering does not alter the recurrence plot. Since
several important quantities are derivable from recurrence
plots, the equivalence of recurrence plots ensures that these
quantities remain unchanged between the original data and
the surrogate �up to a precision dependent on the resolution
of the recurrence plot and the amount of data�. The applica-
tion of recurrence plots to univariate time series however
requires that a state space reconstruction technique such as
time-delay embedding �23� is applied prior to the construc-
tion of a RP.

II. NONPARAMETRIC ESTIMATION OF CONDITIONAL
MUTUAL INFORMATION FUNCTIONALS

There are several approaches to the estimation of condi-
tional mutual information. It is possible to decompose the
problem into multiple problems of estimating mutual infor-
mation and compute the result as in Eq. �5� or into multiple
entropy estimations and combine these using Eq. �6�. Both
mutual information and entropy are functionals of the PDF
of the multivariate signal. Efficient estimation of the PDF
from the time series is the main problem in estimating infor-
mation theoretic quantities.

In this paper, we compare two basic classes of nonpara-
metric methods for the estimation of conditional mutual in-
formation between pairs of time series. The first class can be
best described as binning methods, as these methods dis-
cretize the space into regions usually called bins or boxes.
Binning methods compute a coarse global profile of the PDF
which is usually composed of regions of constant values. The
second class of methods could be described as metric meth-
ods, because their PDF estimation algorithms depend exclu-
sively on distances between samples computed using some
metric. In contrast to the binning methods, metric methods
compute a local approximation of the PDF on a set of points
in the sample space.

A. Binning methods

Binning methods employ a scheme that divides the space
into regions usually called bins. The simplest possible dis-
cretization scheme is equidistant binning �38� which splits
the sample space into bins of equal size regardless of the
distribution of the data. This is also called the histogram
method. Alternative methods respecting the distribution of
the sample data have been proposed, such as hierarchical
subdivision schemes as employed by Fraser and Swinney
�39� and later Darbellay and Vajda �40,41�, and direct divi-
sion schemes such as equiquantal binning �42,43�.

1. Binning using B-spline functions

Daub et al. �44� have presented a method for estimating
multidimensional entropies. Estimation of multidimensional
entropies constitutes sufficient means to indirectly compute
mutual information with Eq. �3� and also the conditional mu-
tual information using Eq. �6�. In classical binning ap-
proaches to computing mutual information, data points close
to bin boundaries can cross over to a neighboring bin due to
noise or fluctuations, thus introducing additional variance
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into the computed estimate. To overcome this problem, Daub
et al. have proposed a generalized binning method, which
makes use of B-spline functions to assign data points to bins.
The sample space is divided into equally sized bins as in
equidistant binning. A major difference between classical
binning and generalized binning is that in generalized bin-
ning, a data point is assigned to multiple bins simultaneously
with weights given by �implicitly normalized� B-spline func-
tions. The shape of the B-spline functions is determined by
their order k, which is a parameter of the method. With
B-spline order 1, each point is assigned to exactly one bin
and the method is equivalent to simple equidistant binning.
The proposed method is thus a fixed binning scheme ex-
tended with a preprocessing step designed to reduce the vari-
ance.

A B-spline function is defined with the help of a knot
vector

ti = �0, i � k ,

i − k + 1, k  i  M − 1,

M − 1 − k + 2, i � M − 1,


where M is the total number of bins and i is an index into the
knot vector. B-spline functions are defined �and evaluated�
recursively �45� by

Bi,1�z� = �1, ti � z � ti+1,

0 otherwise,
�

Bi,k�z� = Bi,k−1�z�
z − ti

ti+k−1 − ti
+ Bi+1,k−1

ti+k − z

ti+k − ti+1
.

The standard definition for computing entropy �1� is used
with

p�xi� =
1

N
�
j=1

N

Bi,k„fM,k�xj�… , �9�

where fM,k�x� is a linear transformation which maps the val-
ues of x onto the domain of the B-spline functions �44�. In
two dimensions it is necessary to compute the joint PDF �44�

p�xi,yj� =
1

N
�
l=1

N

Bi,k�fx�xl��Bj,k�fy�yl�� . �10�

This procedure can be readily generalized to three dimen-
sions

p�xi,yj,zl� =
1

N
�
m=1

N

Bi,k„fx�xm�…Bj,k„fy�ym�…Bl,k„fz�zm�… .

�11�

The computation of I��X ;Y�Z� can thus be written as

IM,k��X;Y�Z� = HM,k�X,Y� + HM,k�X,Z� − HM,k�Z�

− HM,k�X,Y,Z� ,

and each of the terms may be computed using the formulas
�9�–�11� together with Eqs. �1� and �2�. The notation
IM,k��X ;Y�Z� and HM,k�X ,Y� indicates that the method has

two parameters M, the number of bins, and k, the order of
the B spline. For further analysis, the order of the B splines is
fixed at k=3 as this was the order employed in Ref. �44�.

2. Marginal equiquantization

Marginal equiquantization is an estimation method based
on binning. The series are sorted in order of magnitude and
divided evenly into a predefined number of bins. This defines
the mapping to bins for each individual series. Henceforth
the algorithm proceeds in exactly the same manner as for
standard equidistant binning. The two- and three-
dimensional bins are populated based on the bin assignments
in each series. This method has been previously applied by
Paluš �4,11,12,21,22,31,32,42,43�.

An alternative is provided by hierarchical subdivision
schemes such as that by Darbellay et al. �40,41� based on the
work of Fraser and Swinney �39�. Adaptive schemes reduce
the bias of PDF estimation because they adjust to the local
density and offer a better approximation of the PDF using
constant regions. However, depending on the particular
method used in each scheme, the variance of these methods
may be higher because of the additional number of degrees
of freedom in the adaptive subdivision mechanisms. Numeri-
cal tests have confirmed that the above method produces
estimates of mutual information with a very small bias.
However, in a recent report by Celucci et al. �46�, the Fraser
and Swinney hierarchical subdivision scheme �essentially the
same as used in Refs. �40,41�� has been shown to detect
nonexistent structures when only a small amount of data
points is available. In practice, it is imperative that good
estimates of the CMI functional are provided with as little
data as possible. For this reason, hierarchical subdivision
schemes have not been included in the testing process.

B. Metric methods

The second type of method used to estimate CMI in this
paper are metric methods. These methods require that the
sample space be endowed with a metric. The algorithms de-
pend exclusively on distances between points.

Nonparametric estimation of a local PDF in a metric
space can be accomplished in two basic ways. One can begin
by fixing a volume of a given shape �usually a hypersphere�
around the point, where the PDF is to be estimated, and
computing the number of points inside this volume. The
other possibility consists of fixing the number of points and
enclosing them in a hypersphere of minimum volume. The
local PDF is estimated as the number of points divided by
the enclosing volume in both cases.

1. k-nearest-neighbor method

The k-nearest-neighbor �kNN� method combines both ap-
proaches to estimating the local PDF. This estimate of mu-
tual information is based on the original work by Koza-
chenko and Leonenko �47�, who have derived an estimate of
entropy based on nearest-neighbor distances in the sample
space,
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H�x� = �
j=1

N

�N� j� + ln 2 + CE,

where � j is the distance from the jth sample to its nearest
neighbor, N is the number of points, and CE is the Euler-
Mascheroni constant �CE�0.5772�. Kozachenko and Le-
onenko have also proven the consistency of their estimator
under some technical assumptions.

Kraskov et al. �48� were inspired by the Kozachenko-
Leonenko estimate for entropy and derived a method for
computing mutual information using kth-nearest-neighbor
estimates. kth-nearest-neighbor distances exhibit better sta-
tistical properties than nearest-neighbor distances, and re-
cently it has been proved by Goria et al. �49� that also the
estimator of entropy based on kth-nearest-neighbor distances
is consistent. Kraskov et al. �48� presented an estimator of
mutual information and conducted numerical experiments
which have indicated the lack of bias of the estimator for
independent data even for small data sets. The estimator
I�1��X ;Y� may be written as

I�1��X;Y� = ��k� + ��N� − ���nx + 1� + ��ny + 1�� , �12�

where k is the rank of the neighbor used in distance compu-
tations and ��·� is the digamma function. The estimation
algorithm involves iterating through the time series and for
each point of the joint space the distance �k to its kth nearest
neighbor is found. The subspaces X and Y are searched and
the number of points in the hypersphere of radius �k around
the current point is found. These counts are denoted as nx and
ny respectively. The symbol �¯� denotes an average over all
available data points. Any metric may be selected to evaluate
the distances. For practical reasons, the maximum norm is
the most frequently used metric.

Using the above formula, it is possible to compute the
conditional mutual information using a decomposition into
three mutual information computations. However, as
Kraskov et al. state in their work �48�, significant bias is
incurred if different length scales are used in the computation
of mutual information according to Eq. �5�. Experiments in
estimating conditional mutual information using the decom-
position into multiple mutual information estimation prob-
lems have confirmed this expectation. The bias is caused by
the isolation of the three mutual information computations in
which, inevitably, different length scales in different spaces
come into play. It is much more convenient to derive a new
estimator similar to the formula �12�, which estimates condi-
tional mutual information directly using a single length scale.
Expanding on the thought process of the authors in Ref. �48�,
we have derived a new estimator of conditional mutual in-
formation based on Eq. �12�:

I��X;Y�Z� = ��k� − ���nxz + 1� + ��nyz + 1� − ��nz + 1�� ,

where nA is the number of neighbors of the reference point in
the space A with distance smaller than the distance to the kth
neighbor of the given reference point in the joint space
�X ,Y ,Z�. It is generally not necessary that the metric is the
same in all of the spaces, but we have elected to use the
maximum norm in all cases.

2. Cross redundancies based on correlation integrals

The term redundancy is frequently used as a synonym for
multidimensional mutual information in the context of dy-
namical systems. Redundancies based on correlation inte-
grals �CIs� use a fixed volume approach to estimating the
local PDF. The connection between the correlation integral
and local probabilities is elucidated in Ref. �50�. The corre-
lation integral has been introduced by Grassberger and Pro-
caccia �51� in the context of estimating the correlation di-
mension of strange attractors. The correlation integral is
given by

C�x,�� =
1

N�N − 1��i=1

N

�
j=1,j�i

N

��� − �xi − xj�� ,

where � · � represents the selected metric, ��·� is the Heavi-
side function, and � is the radius of the hypersphere in which
neighbors are sought. Savit et al. �52� show how it is pos-
sible to compute the conditional redundancy
R��x1 ;xm�x2 , . . . ,xm−1 ,�� by quantifying the dependency be-
tween x1 and xm conditioned on x2 , . . . ,xm−1:

R��x1;xm�x2, . . . ,xm−1,��

= − log
C�x1, . . . ,xm−1,��C�x2, . . . ,xm,��
C�x1, . . . ,xm,��C�x2, . . . ,xm−1,��

.

Inspired by this approach, Prichard and Theiler �50� have
extended the concept of conditional redundancies to multiple
variables and propose computing the time-lagged mutual in-
formation between two time series with

I�x;y,l,�� = H„x�t�,�… + H„y�t − l�,�… − H„x�t�,y�t − l�,�… ,

where the Shannon entropy H�x ,���−log�C�x ,���. In this
work, the conditional mutual information is estimated using
the formula

I�x;y,�,�� = I„�x�t�;��y�t��y�t�,�…

= − log
C„x�t�,y�t�,�…C„��y�t�,y�t�,�…
C„x�t�,��y�t�,y�t�,�…C„y�t�,�…

.

It has been shown that the estimate of the mutual information
using correlation integrals converges if �→0 �50�. However,
in data sets of finite size, small sample effects are observed,
which disrupt the convergence behavior of the estimator.

III. ESTIMATOR BIAS

In this section the estimators of conditional mutual infor-
mation are evaluated using a linear system for which an ana-
lytical estimate of the conditional mutual information with
negligible bias �compared to the tested estimators� is avail-
able. The convergence properties of each method are inves-
tigated.

The experiment tests the estimators using a stationary lin-
ear dynamical model with linear coupling: two coupled cop-
ies of the autoregressive moving average �ARMA� part of
the Barnes sunspot model �53� defined by the equations

zi
�1� = �1zi−1

�1� + �2zi−2
�1� + ai

�1� − �1ai−1
�1� − �2ai−2

�1� ,
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zi
�2� = �1��zi−1

�1� + �1 − ��zi−1
�2� � + �2zi−2

�2� + ai
�2� − �1ai−1

�2� − �2ai−2
�2� ,

where �1=1.906 93, �2=−0.987 51, �1=0.785 12, �2

=−0.406 62, and ai
�j� are independent and identically distrib-

uted Gaussian random variables with zero mean and standard
deviation 0.4. The conditional mutual information
I��z�1� ;zT

�2��z�2�� and I��z�2� ;zT
�1��z�1�� can be computed analyti-

cally �43�, where zT
�i� denotes the time series z�i� shifted by T

samples into the future. For a set of variables X1 ,X2 , . . . ,Xn
having zero mean, unit variance, and correlation matrix C,
their mutual information can be computed as

I�X1,X2, . . . ,XN� = −
1

2�
i=1

N

log�
i� ,

where 
i are eigenvalues of the correlation matrix C. The
conditional mutual information can be computed using mu-
tual information according to Eq. �5�. Long time series �
�106 samples� were used to compute the analytical estimates
ensuring that they have a negligible bias and variance with
respect to the nonparametric methods.

One hundred realizations of the above model have been
generated and the estimators of conditional mutual informa-

tion presented above have been applied to each realization in
turn. The results of the analysis are shown in Figs. 1–3. The
numerical results are interpreted in the context of the theo-
retical expectations of each estimator. In this experiment the
estimators were applied directly to the time series normal-
ized to zero mean and unit variance.

1. Binning estimators

There are no consistency results for the B-spline estima-
tor; however, Fig. 1 shows that the estimators converge to
some value dependent on the free parameter—the number of
bins. The theoretical result for classical histogram binning
�the B-spline estimator with splines of order 1 is equivalent
to the histogram estimator� states that the histogram estima-
tor converges to the true PDF if

N → 	 and h → 0 with hN → 	 , �13�

where h is the width of each bin �54�. The B-spline estimator
does not include any additional mechanisms to improve con-

FIG. 1. Dependence of the mean conditional mutual information
estimate by the B-spline method �top� and by the equiquantal esti-
mator �bottom� on the number of samples in the time series for
different numbers of bins.

FIG. 2. Dependence of the mean conditional mutual information
estimated with the k-nearest-neighbor estimator on the number of
samples in the time series for different k.

FIG. 3. Dependence of the mean conditional mutual information
estimated with the cross-redundancies estimator on the number of
samples in the time series for different neighborhood sizes.
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vergence and a better result cannot be expected. The experi-
ments also indicate that in practical settings one cannot ex-
pect to converge to the true value of the conditional mutual
information regardless of the length of the data set provided.
The number of bins would have to be adjusted with respect
to the length of the data set and the nature of the series.
Figure 1 shows the convergence behavior for the B-spline
estimator and for the equiquantal estimator. The equiquantal
estimator displays similar convergence behavior �with re-
spect to the number of bins� although the absolute values
differ from those of the B-spline estimator.

2. k nearest neighbors

The kNN estimator of mutual information is consistent
and should asymptotically converge to the true value of the
mutual information regardless of the value of k �49�. The
conditional mutual information estimator presented in this
paper is based on the same theoretical assumptions, and it
was expected that the estimator would also exhibit conver-
gence in the experiments. The results of the experiment on
the Barnes model are in agreement with this hypothesis and
the convergence behavior of the kNN CMI estimator is
clearly seen in Fig. 2.

3. Cross redundancies

The estimate of mutual information using the correlation
integral as defined by Grassberger and Procaccia �51� is
known to be consistent and converges to the true value of
mutual information if the size of the neighborhood �→0
�50�. The estimate of conditional mutual information seems
to behave in a similar fashion, as shown by the results on the
Barnes model computed using the cross-redundancy method.
In general larger neighborhoods increase negative bias, as
seen in Fig. 3. For short time series, however, small neigh-
borhoods do not provide a good estimate as the variance of
the estimator is high due to the sparsity of samples.

IV. EXPERIMENTS IN DETECTING DIRECTIONALITY
OF COUPLING

The subsequent sections describe numerical experiments
with a unidirectionally coupled pair of chaotic Rössler oscil-
lators. Four distinct cases are investigated. For each case,
1000 realizations and 1000 permutation surrogates of the
coupled systems were generated and analyzed to obtain de-
pendable statistics.

The first experiment shows the effectiveness of each esti-
mator on a pair of Rössler oscillators with a small frequency
mismatch. Phase is extracted by means of the Hilbert trans-
form. The second experiment simulates the marked-events
phase extraction method by destroying the intrawave infor-
mation in the instantaneous phase time series from the first
experiment. In this way, the effect of a reduction of the
amount of information in the time series can be investigated.
In the third experiment the relative frequencies of the sys-
tems were changed to 5:1 �faster system drives slower sys-
tem� and finally in the fourth experiment to 1:5 �slower sys-
tem drives faster system�.

Each of the estimators has one free parameter; however,
the binning estimators were tested only with eight bins as
this number of bins was already used in previous work �21�
and is known to be effective for a wide range of systems.
This has also reduced the amount of computations per-
formed. The cross-redundancy estimator was tested with
neighborhood size varying from 0.007 to 0.3 in ten logarith-
mically spaced steps. The maximum neighborhood size was
fixed to this value because most spatial indexing algorithms
lose their effectiveness if large hyperspheres must be
scanned for neighbors, thereby rendering the correlation in-
tegral expensive to compute. The kNN estimator was tested
with the number of neighbors from 1 to 64 in powers of two,
as higher neighbor counts increase the computational cost
considerably.

The coupled Rössler systems used in this study can be
described by the following set of equations:

ẋ1,2 = − �1,2y1,2 − z1,2 + �1,2�x2,1 − x1,2� ,

ẏ1,2 = �1,2x1,2 + a1,2y1,2,

ż1,2 = b + z1,2�x1,2 − c� , �14�

where �1=0, b=0.2, and c=10. The parameters �1,2, a1,2,
and �2 are adjusted in the experiments.

A. Coupled 1:1 Rössler models: Instantaneous phase

The first numerical experiment was performed with both
oscillators having very close frequencies �1,2=1�0.015.
1000 realizations with a1,2=0.15 and �2=0.05 were gener-
ated using Eqs. �14� by sampling the systems with about 20
samples per period. The phase time series were extracted
from the x1 and x2 variables using the Hilbert transform ap-
proach by convolving the original series in the time domain
with the Hilbert transform impulse response to obtain the
complex part of the analytical signal. The convolution win-
dow covered approximately ten periods of the signal. The
significance of the results has been tested using a distribution
obtained from permutation surrogates where both of the
phase time series were subjected to the permutation proce-
dure.

The results of the experiment are summarized in Table I.
The summary shows that all of the methods perform rather

TABLE I. Rössler 1:1 experiment: The first column in the table
identifies the applied method, the second column the range of pa-
rameters providing good results, the third column the smallest
amount of samples from which more than 95% true positives and
fewer than 5% false positives were obtained, and the fourth column
shows the number of false positives �FP�.

Method Parameter Min. pts. FP

B spline Order 3, eight bins 512 �0

Eqiquantal binning Eight bins 512 �0

Cross redundancies �� �0.22,0.3� 512 �0

kNN k� �8,16,32,64� 1024 �0
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well as the required detection rate of 95% in the direction of
coupling is obtained for all methods for short time series
�512 points correspond to �25 periods� except for the kNN
method, which required 1024 points to reach the same detec-
tion rates.

The B-spline and equiquantal binning estimators are very
effective on the basic version of the coupled Rössler oscilla-
tors. There are almost no false positives for any of the meth-
ods. This confirms the results in Ref. �21� where the authors
used equiquantal binning with Fourier transform surrogates
on the same Rössler pair and obtained no false positives. The
cross-redundancy estimator seems to perform better when
larger neighborhood sizes are used during the estimation of
the correlation integrals. Choosing a neighborhood size too
small increases the number of false positives beyond accept-
able levels quickly, as seen in Fig. 4. With more data avail-
able, the width of the distribution of the permutation surro-
gates drops faster than that of the distribution of the coupled
systems. This behavior may be caused by the fact that in long
time series intercycle �long-term� dependencies become
more important, and permutation surrogates in their basic
version do not preserve dependencies across period bound-
aries. Under these conditions more sophisticated surrogate
generation methods may be necessary to adequately repre-
sent the distribution under the null hypothesis.

In the case of the kNN estimator, increasing the number of
neighbors increases the specificity at the cost of decreasing
the sensitivity �cf. Fig. 5�. For k�8 the false positives drop
below the required level of 5%; however, the sensitivity of
the detector is decreased as the number of neighbors grows,
and this is the reason that the required true positive rate is
reached at 1024 points. An analysis of the histograms of the
distributions for mean CMI in the uncoupled direction aris-
ing from the data set and from the surrogate data set show
that the reason for higher false positives with small k is that
the variance of the CMI of the surrogates drops faster than
the variance of the CMI estimates from the data. This is
similar to the situation of the cross-redundancy estimator.
Use of a higher number of neighbors causes the variances of
CMI on the data set and on the surrogate set to equalize.

However, a higher number of neighbors causes the CMI es-
timates to be negatively biased, and thus the true positive
rate �sensitivity� of the method decreases as a result. This
negative bias can also be observed in Fig. 2, where the
curves for larger k converge to the analytical estimate from
below.

Summarizing the results, all of the methods perform well
on the basic version of linearly coupled Rössler systems with
permutation surrogates and correctly detect the directionality
for short time series. However, there are some caveats when
applying metric methods: care must be taken when choosing
the value of the free parameter. The binning estimators with
the default number of bins provide excellent results on the
given data set.

B. Coupled 1:1 Rössler models: Marked-events phase

In this section, we repeat the previous experiment but the
intrawave information is first destroyed by interpolating the
phase linearly between period limits. Surrogates were gener-
ated in the same manner as for the above experiment. This
experiment setup mimics marked-events phase extraction
while allowing us to find how a reduction in information
content of the phase time series affects the detection statis-
tics.

The results in Table II surprisingly show that destroying

FIG. 4. Rössler 1:1 experiment. Dependence of the false posi-
tive rate of the cross-redundancy method for various neighbor sizes.
Only ��0.1 yielded acceptable false positive levels in the
experiment.

FIG. 5. Rössler 1:1 experiment. Dependence of the false posi-
tive rate of the kNN method for various nearest-neighbor counts.
The false positive rate is zero for k� �16,32,64�.

TABLE II. Rössler 1:1 marked-events phase: The first column in
the table identifies the applied method, the second column the range
of parameters providing good results, the third column the smallest
amount of samples from which more than 95% true positives and
fewer than 5% false positives were obtained, and the fourth column
shows the number of false positives.

Method Parameter Min. pts. FP

B spline Order 3, eight bins 512 �0

Eqiquantal binning Eight bins 512 �0

Cross redundancies �� �0.22,0.3� 512 �0

kNN k� �32,64� 1024 �0
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the intrawave information in the phase time series does not
affect the detection methods in any significant way. The kNN
estimator is affected by a quantization effect: the distribution
of phases and phase differences is heavily discretized �be-
cause of the low sampling rate of 20 points per period�. This
has been anticipated by Kraskov et al. �48�, who recommend
using a higher number of neighbors to resolve this problem
or adding low-amplitude noise to the time series. Adding
low-amplitude noise is a potentially dangerous practice with
very short time series as it may create spurious structures not
inherent in the data. However, as is seen from the results of
the experiment, the kNN estimator succeeds in detecting the
directionality correctly with a higher number of neighbors.

C. Coupled 1:5 Rössler models: Instantaneous phase

In the next experiment, a pair of Rössler oscillators was
set up to have a substantial relative ratio of frequencies �1:5�
to investigate its effect on the quality of directionality detec-
tion. The parameters of the coupled oscillator pair �14� were
set to: �1=0.5, �2=2.515, a1=0.15, a2=0.72, and �2=0.1.
The sampling frequency was changed so that the faster sys-
tem was again sampled at approximately 20 samples per pe-
riod and phase was extracted using the Hilbert transform.

Using permutation surrogates in the same way as for the
experiments above produced directionality estimates with a
high rate of false positives for all of the tested CMI estima-
tion algorithms. An analysis of the distributions of CMI
shows that randomization of the phase time series corre-
sponding to the fast system causes a significant reduction in
variance of the surrogates relative to the variance of the data.
This is clearly seen in the histogram for the kNN estimator in
Fig. 6. The histograms for the all of the other methods are
similar and display the same effect. We note that this hap-
pens only for the estimates in the uncoupled direction. In the
direction of coupling, all three possibilities produce very
similar distributions of CMI in the surrogate data set. In light
of this evidence, it is recommended to use a more elaborate
surrogate generation scheme that preserves dependency
structures longer than one period or to leave the time series
of the fast system unchanged when constructing surrogates.

Binning methods are able to correctly determine the di-
rectionality even when the relative frequencies are unequal,
but it is clearly seen that detection is much more difficult
than in the experiments with comparable frequencies. None
of the methods can correctly detect the directionality for time
series shorter than 8192 samples �approximately 220 periods
of the faster system�.

The parameters of the metric methods can be set to pro-
vide results on par with those of the binning methods; how-
ever, the space of parameters where they provide good re-
sults is reduced compared to the experiments with
comparable frequencies. The kNN method loses some of its
sensitivity already with k=16 neighbors, and does not satisfy
the requirements of the hypothesis test as the true positive
rate drops below 95% for the investigated data sample sizes
�see Table III�.

D. Coupled 5:1 Rössler models: Instantaneous phase

The last numerical experiment tests the detection of direc-
tionality when the direction of coupling is from the faster

system to the slower system. The parameters of the coupled
oscillator pair �14� were set to �1=2.515, �2=0.5, a1=0.72,
a2=0.15, and �2=0.1. The surrogate data sets were created
by applying the permutation procedure to the slower system
as in the last experiment.

Table IV now shows a clear difference between methods
dependent on distances and binning methods. Metric meth-
ods require many more data points to satisfy the require-
ments of the hypothesis test. The table shows that both of the
metric methods seem to have a lower false positive rate than
the binning methods, but this is because the metric methods
need many more data points to gain sufficient sensitivity. The
binning methods have comparable false positive rates when
the number of data points is 8192.

It should be noted that even for smaller amounts of data
than the ones listed in Tables I–IV, the false positive rate
satisfies the hypothesis test and only the sensitivity is ad-
versely impacted. Using smaller than recommended amounts
of data should not therefore cause spurious detections.

FIG. 6. Rössler 5:1 experiment. Histogram of conditional mu-
tual information estimates for the model data and for the permuta-
tion surrogates where either one of the time series or both of them
were randomized. The coupling is unidirectional from the faster
system to the slower system. In the direction of coupling all the
surrogates generate very similar distributions of the CMI index
�top�. However, in the reverse direction when the fast system is also
randomized, the width of the distribution of the surrogates is clearly
smaller than that of the distribution arising from the original data
�bottom�.

TABLE III. Rössler 1:5 experiment: The first column in the
table identifies the applied method, the second column the range of
parameters providing good results, the third column the smallest
amount of samples from which more than 95% true positives and
fewer than 5% false positives were obtained, and the fourth column
shows the number of false positives.

Method Parameter Min. pts. FP

B spline Order 3, eight bins 8192 �5%

Eqiquantal binning Eight bins 8192 �5%

Cross redundancies �� �0.22,0.3� 8192 �5%

kNN k� �4,8� 8192 �5%
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V. DISCUSSION AND CONCLUSION

The problem of inferring directionality of coupling from
time series was examined in this paper. A directionality de-
tection method based on the framework of information
theory was described. Several methods of estimating infor-
mation theoretic functionals were presented. The behavior of
these methods on a linear model for which an analytical es-
timate is available was shown. The methods showed conver-
gence characteristics in accordance with expectations based
on available theory. Detailed numerical experiments in de-
tecting the directionality of coupling in pairs of Rössler os-
cillators were performed under various conditions. Based on
the results of the experiments, it is clear that metric methods
provide performance on par with the binning methods; how-
ever, their parameters may need to be adjusted. This leads us
to recommend using binning methods on experimental data.

The problem of bias and variance of the conditional mu-
tual information estimators merits a discussion of its own. In
general, it can be stated that low variance of an estimator
should always be preferred over low bias if the estimates are
to be subjected to surrogate testing. This is because any bias
of the estimator itself tends to be almost identical in the
original data and in the appropriate surrogates, and thus has
practically no effect when testing for the significance of di-
rectionality detections. The variance of an estimator causes
the distribution of the CMI estimates from the surrogates to
widen further than is merited by their intrinsic variance. This
effect becomes important if the additional variance is large
enough to distort the results of the surrogate tests. As a con-
sequence, binning estimators do not suffer from worse detec-

tion statistics than the kNN method, although binning meth-
ods have a significantly higher bias �cf. Figs. 1 and 2�.
Estimators that have displayed a higher bias �or a substantial
dependence of the bias on the value of the free parameter�
can thus prove more robust when applied to detection prob-
lems, as was the case with the equiquantal estimator. There is
one additional important source of bias in the testing prob-
lem: the surrogates themselves. Because in practice there are
no perfect surrogates, the distribution of the directionality
indices on the surrogate data does not exactly represent the
null hypothesis of uncoupled systems. This bias is much
more difficult to cope with and can be decreased only with
improved surrogate generation methods that would allow for
a more accurate estimation of the distribution of the CMI
indices under the null hypothesis. This effect is seen in Figs.
4 and 5. The width of the CMI index distribution on permu-
tation surrogates drops too quickly with larger data sets for
some parameter values, causing false positive detections.

Several statements can be made about the character of the
problem of directionality estimation using information theo-
retic functionals. Surprisingly, removing the intrawave infor-
mation from the phase time series does not impact the per-
formance of the estimators if the system parameters are
similar. This may, however, require that the discrete nature of
the time series is taken into account when selecting the value
of the free parameter of a particular estimator. It is clear from
the above experiments that the problem of detecting direc-
tionality between dissimilar systems is much more difficult
than detecting directionality in systems with similar dynam-
ics. However, many interesting systems such as the cardio-
respiratory system are composed of subsystems with quite
different dynamics: the frequency ratio of the lung oscillator
to the heart oscillator is approximately 1:4. The conducted
experiments clearly indicate that good performance on a
simple balanced model does not necessarily imply that a par-
ticular method is fit to be applied to practical problems with
mismatched parameters or differing dynamics. New methods
for detecting directionality should be tested precisely on such
unbalanced systems to support the claim that they correctly
detect directionality in complex cases.
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