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(ChIP-chip or ChIP-Seq) or reverse engineering algorithms for the 
analysis of transcriptional networks4,10, only one experimentally 
validated algorithm exists for the dissection of signaling networks 
in a mammalian context11, which inferred substrates of 73 kinases. 
Here we propose and experimentally validate MINDy, a gene expres-
sion profile method for the systematic identification of genes that 
modulate the transcriptional program of a transcription factor at 
the post-translational level—that is, genes encoding proteins that 
affect the TF’s activity without changing the abundance of its mRNA. 
These proteins may post-translationally modify the TF (for example, 
kinases), affect its cellular localization or turnover, be its cognate part-
ners in transcriptional complexes or compete for its DNA binding 
sites. They may also include proteins that do not physically interact 
with the TF, such as those in its upstream signaling pathways.

RESULTS
The MINDy algorithm
MINDy interrogates a large gene expression profile dataset to identify 
‘candidate modulator’ genes whose expression strongly correlates with 
changes in a TF’s transcriptional activity. As shown in Supplementary 
Note 1 (see also Supplementary Figs. 1–3), this can be efficiently accom-
plished by computing an information-theoretic measure known as the 
conditional mutual information, I[TF;t | M]12, between the expression 
profile of a TF and one of its putative targets (t), given the expression of 
a modulator gene (M). Accurate estimation of the conditional mutual 
information requires exceedingly large datasets. Thus MINDy infers 
candidate modulators using a related yet simpler estimator, which we 
denote as ∆I. Briefly, the estimator assesses the statistical significance of 
the difference in mutual information between the TF and a target in two 
subsets—the top and bottom 35% of samples in which the modulator is 
most and least expressed. The 35% parameter was determined empiri-
cally as the one optimizing the identification of proteins in the B-cell 
receptor signaling pathway as modulators of MYC (Online Methods).

A schematic representation of the MINDy algorithm is provided in 
Figure 1a. MINDy takes four inputs: a gene expression profile dataset, 
a TF of interest, a list of potential modulator genes (M1, M2,...) and a 
list of potential TF targets (t1, t2,...). The ∆I estimator requires that the 
expression of the modulator and of the TF be statistically independent 
(‘independence constraint’) and that the modulator expression have 
sufficient range (‘range constraint’). Appropriate statistical tests for these 

The ability of a transcription factor (TF) to regulate its targets is 
modulated by a variety of genetic and epigenetic mechanisms, 
resulting in highly context-dependent regulatory networks. 
However, high-throughput methods for the identification of 
proteins that affect TF activity are still largely unavailable. Here 
we introduce an algorithm, modulator inference by network 
dynamics (MINDy), for the genome-wide identification of post-
translational modulators of TF activity within a specific cellular 
context. When used to dissect the regulation of MYC activity in 
human B lymphocytes, the approach inferred novel modulators 
of MYC function, which act by distinct mechanisms, including 
protein turnover, transcription complex formation and selective 
enzyme recruitment. MINDy is generally applicable to study the 
post-translational modulation of mammalian TFs in any cellular 
context. As such it can be used to dissect context-specific 
signaling pathways and combinatorial transcriptional regulation.

Reverse engineering of cellular networks in prokaryotes and lower 
eukaryotes1–3, as well as in mammals4–6, has started to unravel the 
remarkable complexity of transcriptional programs. These programs, 
however, may change substantially as a function of the availability of 
proteins affecting their post-translational modification of transcrip-
tion factors, such as phosphorylation, acetylation and ubiquitination 
enzymes7, as well as of those participating in transcription complexes 
(cofactors), thus making cellular networks highly context dependent.

Although the large-scale reprogramming of the cell’s transcrip-
tional logic has been studied in yeast8,9, the identification of genes 
that affect these events remains elusive. Indeed, in contrast to methods 
such as those based on genome-wide chromatin immunoprecipitation  
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when the TF is slightly activated. In that case, TF-target mutual informa-
tion will actually decrease as a function of the modulator. Details on the 
conditional mutual information analysis and on how to assess both the 
mode of action and the biological activity of a modulator are provided 
in the Online Methods.

For illustrative purposes, we show a simple synthetic network (Fig. 
1b; Online Methods), which explicitly models two post-translational 
modulation events (activation by phosphorylation and cofactor 
binding) differentially affecting a TF’s regulatory logic. Rather than 
representing a realistic case, this model is only a conceptual tool to 
illustrate two alternative regulatory programs of a TF depending on 
its modulators (Fig. 1c).

constraints are discussed in the Online Methods. Candidate modulators 
may include all genes satisfying these constraints (unbiased analysis) 
or may be filtered by additional criteria—for example, their molecular 
functions. Each possible (TF, M, t) triplet is then independently tested 
using the ∆I estimator. False positives are controlled using appropriate 
statistical thresholds (Online Methods).

A positive or negative mode of action is determined, depending on 
whether the TF-target mutual information increases or decreases as a 
function of the modulator abundance (Fig. 1a). The mode of action, 
however, is not necessarily equivalent to the modulator’s biological activ-
ity as a TF activator or antagonist. For instance, a modulator may be such 
a strong TF activator that the TF-target kinetics becomes saturated even 

t

TF
M

G
en

es

Filter

t
TF

t
TF

TF

M

t

TF

G1

cTF

0.99

6.6E-4

0.99

TFcTF

G2

G3

TFTF

G1

G1

KcTF

2.1E-23

3.4E-5

0.99

0.99

0.01

0.01

TFKTFcTF

G2

G2

G3G3

G3

TF

G2

K

TFK

G1

a

cb

t
TF

t
TFLow information

Low

M Low

TF

t
TF

t
TFHigh information

t
TF

t
TF

Low information

High

M High

Low TF High

High information

Low information

High information

Low information

Microarray expression profile data
Experiments

Protein interaction model Unconditional (ARACNe) Kinase CMI Co-TF CMI

† † † †

Experiments sorted by the modulator gene

M lowest 35% M highest 35%

Scenario 1
Positive
modulator

Scenario 2
Negative
modulator

Scenario 3
Not a 
modulator

Scenario 4
Not a
modulator

Low and high modulator expression
sets sorted by TF expression

High
t

TFgh information

Figure 1  MINDy algorithm. (a) A gene expression profile dataset is represented as a matrix, where columns indicate different samples and rows indicate 
different genes. Given a transcription factor of interest (TF), a modulator (M) and a target (t) to be tested are chosen among the remaining genes. Some 
modulator-target combinations may be eliminated a priori based on functional or statistical constraints (blue rectangle). For instance, one may want to 
consider only ubiquitin ligases as candidate modulators. All the samples are then sorted according to the expression of the selected modulator M. The set of 
samples (for example, 35%) with the lowest and highest expression of the modulator are then selected. These sample sets are labeled M low and M high. In 
each of the two sample sets, samples are finally sorted according to the TF expression. Three cases are possible when comparing the TF-target correlation 
in M high versus M low. In Scenario 1 (positive inferred modulator), there is a significant increase in mutual information (that is, more correlation in 
the M-high set than in the M-low set). In Scenario 2 (negative inferred modulator), there is a significant decrease in mutual information (that is, less 
correlation in the M-high set than in the M-low set). In Scenarios 3 and 4 (not a modulator), no significant mutual information change is observed. (b) 
Synthetic network analysis using MINDy. TF, the transcription factor of interest; K, a protein kinase; cTF, a co-transcription factor; TFcTF

†
, TF activated through 

phosphorylation by K; TFcTF

†
, transcriptionally active complex formed between TF and cTF. G1, G2 and G3 are three downstream targets of TF (Online 

Methods). (c) Networks reconstructed by ARACNe and MINDy. ARACNe (left) is based on pairwise mutual information and therefore captures only the 
unconditional interaction between TF and G1. In contrast, MINDy infers three-way interactions using the conditional mutual information. When K is used as 
candidate modulator (middle), it correctly identified the conditional interaction between TF and G3. Similarly, it also correctly inferred cTF as the modulator 
of TF-G2 interaction (right). Interactions are labeled with their respective P-values. Interactions that are statistically significant, after correction for multiple 
testing, are shown in black with red P values. CMI, conditional mutual information.
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To study MINDy’s robustness and generality, we tested its per-
formance using different sets of candidate MYC targets. First, we 
used 340 literature-validated targets from the MYC database19 (DB 
targets). Then, to also test whether the algorithm may generalize to 
TFs whose targets are not characterized in the literature, we used 197 
MYC targets inferred by ARACNe4, our previously described method 
for inferring the direct targets of a TF (AR targets). Finally, we con-
sidered all genes in the gene expression profile data as candidate 
targets (ALL targets), representing cases when literature or com-
putationally inferred TF targets are not available (Supplementary 
Note 2).

MINDy-based identification of MYC modulators
We applied MINDy to the genome-wide identification of modula-
tors of the MYC protein, using a previously assembled collection of 
254 gene expression profiles13,14 representing 17 distinct cellular phe-
notypes derived from normal and neoplastic human B lymphocytes 
(Online Methods). MYC is a basic helix-loop-helix/leucine zipper 
(bHLH/Zip) TF controlling many cellular processes, including cell 
growth, differentiation, apoptosis and DNA replication15,16. It is impli-
cated in the pathogenesis of several human cancers17 and can either 
activate or repress a large number of targets, depending on the cellular 
context (reviewed in ref. 18).

Table 1  MYC modulators inferred by MINDy among signaling proteins and TFs
Signaling proteins Transcription factors

Modulatora

No. of MYC  
targets 

affected by 
modulator

MINDy-
predicted 
mode of 
actionb

Biological 
activityc Evidenced Modulatora

No. of MYC  
targets 

affected by 
modulator 

MINDy-
predicted 
mode of 
actionb

Biological 
activityc Evidenced

Binding-site 
enrichment 

analysis 
P-valuee

CSNK2A1 178 ↑ + DirectS18, S19 SMAD3 159 ↓ – DirectS20 –

HCK 111 ↓ – PathwayS19, S21 AHR 156 ↓ + DirectS22 –

PPAP2B 109 ↓ – CREM 125 ↓ + 1 × 10–36

SAT 99 ↓ – DDIT3 96 ↓ – 0.04

MAP4K4 83 ↓ + PathwayS23, S24 DRAP1 92 ↑ – –

DUSP2 82 ↓ – PathwayS25, S26 ZKSCAN1 87 ↑ – –

CSNK1D 80 ↓ – NR4A1 82 ↓ – –

PPM1A 80 ↓ + BHLHB2 80 ↓ – Validated 9 × 10–58

GCAT 78 ↑ + ATF3 77 ↓ + 1 × 10–17

TRIO 74 ↓ – NR4A2 72 ↓ – –

STK38 60 ↑ – Validated UBTF 71 ↑ – –

PRKCI 58 ↑ + NFKB2 66 ↓ – 0.70 (ns)

CDKN1A 58 ↓ – DirectS27 HOXB7 65 ↑ – –

MTMR6 52 ↓ + BACH1 64 ↓ – 5 × 10–9

PRKACB 50 ↓ + SOX5 64 ↓ + 0.66 (ns)

NEK9 47 ↑ – FOS 57 ↓ – 2 × 10–3

MYST1 45 ↑ – ARNT 55 ↑ – DirectS22 –

MAPK13 41 ↑ – PathwayS28, S29 IRF1 55 ↓ – 6 × 10–8

OXSR1 41 ↓ + ETV5 54 ↓ + –

DUSP4 40 ↓ – TCF12 51 ↑ – 2 × 10–3

MAP2K3 39 ↓ – PathwayS30 SMAD2 50 ↑ – DirectS20 –

FYN 38 ↓ – PathwayS19, S31 NFATC4 46 ↑ – –

PPP4R1 35 ↓ + E2F5 45 ↑ – DirectS32 –

MAPK1 35 ↑ – Direct22, S33 JUN 45 ↓ – 1 × 10–7

MAP4K1 34 ↓ u PathwayS34 CUTL1 39 ↓ + –

CSNK1E 33 ↑ – ESR2 38 ↓ + –

NEK7 32 ↑ – ZNF354A 37 ↑ – –

CSNK2A2 31 ↑ + DirectS18 MAF 37 ↓ + –

TRIB2 30 ↓ + SMARCB1 37 ↑ – DirectS35 –

HDAC1 8 ↑ + Validated BRD8 34 ↑ + –

DBP 34 ↑ – 6 × 10–3

CBFA2T3 33 ↑ – –

ESR1 31 ↑ – 0.04

RELB 31 ↓ – –

TFEC 30 ↓ u 0.92 (ns)

MEF2B 14 ↑ + Validated
aShown are modulators that affect ≥ 30 MYC targets or that were experimentally validated in this work. bMutual information increase (↑) or mutual information decrease (↓).cActivator (+), 
antagonist (–) or undetermined (u). dDirect, physically interacts with MYC protein or MYC binding sites; pathway, literature-validated role in pathway-mediated modulation of MYC activity (for 
example, B-cell receptor and mitogen-activated protein kinase pathways); validated, experimentally validated in this study. References S18–S35 are given in the Supplementary References. 
ens, not statistically significant (P > 0.05).
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likely to affect MYC protein function, although there may be false posi-
tives. Though not exhaustive, this provides an independently estab-
lished literature-based dataset to assess algorithm performance (see 
Supplementary Note 3 for details on inclusion criteria).

From this set, 150 genes were excluded as not represented on the 
chip, not expressed in B cells or not satisfying the range or indepen-
dence constraints. Of the remaining 83, 29 (35%) were inferred as MYC 
modulators by the algorithm (P = 0.0078 by FET). This suggests that 
the algorithm is effective in recapitulating known MYC modulators 
(especially as Ingenuity modulators may not be B-cell specific) with 
recall comparable to that of high-throughput assays for protein-protein 
interactions, which on average detect 20% of known interactions23. We 
note that 54/83 proteins were reported by Ingenuity as MYC modulators 
not supported by a direct physical interaction. Of these, MINDy identi-
fied 18 (33.3%, P = 0.041 by FET), suggesting that MINDy is useful in 
identifying both physically interacting and indirect TF-modulators and 

MINDy identifies known MYC modulators
From a pool of 3,131 genes satisfying both independence and range 
constraints and using DB targets, MINDy inferred 662 MYC modu-
lators (Supplementary Table 1) at a false-discovery rate (FDR) of 4.5 
× 10−3 (Online Methods). Gene Ontology (GO) “molecular function” 
enrichment analysis revealed that the 20 most enriched categories, by 
Fisher’s exact test (FET), include protein kinase activity (P = 0.002), TF 
binding (P = 0.003), acetyltransferase activity (P = 0.004) and phospho-
protein phosphatase activity (P = 0.016). Thus, inferred modulators were 
enriched in categories known to include effectors of MYC activity20–22 
(Online Methods and Supplementary Table 2).

To test whether MINDy could recapitulate literature-based MYC 
modulators, we assembled an unbiased set of 233 MYC modulators, 
including both proteins physically interacting with MYC and indirect 
modulators (Supplementary Table 3), using the Ingenuity software 
(Ingenuity Systems). The assumption is that physical interactors are 
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Figure 2  STK38 regulates the stability of MYC 
protein. (a) Visualization of MINDy output. Gene 
expression profiles are displayed with genes on 
rows and samples on columns. Expression values 
for each gene are rank transformed, median 
centered and rescaled between [–1, 1]. Samples 
were partitioned based on the expression levels of 
STK38 and, within each partition, sorted by the 
expression levels of MYC. (b) ST486 cells were 
infected with lentivirus expressing shRNA specific 
to STK38 and collected 96 h after infection. 
Whole cell extracts were analyzed by western 
blotting using anti-MYC, anti-STK38/NDR1 and 
anti-β-actin antibodies. Representative results 
from two of five independent experiments are 
shown. (c) qRT-PCR analysis of MYC and MYC 
target gene expression after silencing of STK38 
in ST486 cells. Relative expression fold change 
between STK38 shRNA– and control shRNA–
transduced cells was normalized to that of β-actin 
(ACTB) housekeeping gene. Bars represent the 
mean ± s.e.m. of three different samples. (d) 
STK38 mediates MYC phosphorylation. Top 
graph shows accumulation of phosphorylated 
MYC in STK38-silenced cells in the presence of 
proteasomal degradation inhibitor MG132 (48 
h after infection). ST486 cells were infected 
with lentivirus expressing STK38 shRNA or 
control shRNA. The cells were treated with or 
without MG132 for 4 h before harvesting. Whole 
cell extracts were analyzed by western blotting 
using anti-STK38, anti-phospho-MYC (Thr58/
Ser62), anti-MYC and anti-GAPDH antibodies. 
Bottom plot provides detailed densitometry 
histogram. Relative ph-MYC expressions (the 
ratio of ph-MYC to total MYC) are normalized to 
those of cells transduced with control shRNA. 
(e) HA-STK38 expression vector was transiently 
transfected into 293T cells with FLAG-MYC 
expression vector. At 24 h after transfection, 
immunoprecipitation was performed using the 
anti-HA agarose beads. Whole cell extracts and 
immunoprecipitated proteins were analyzed by 
western blotting with anti-FLAG and anti-HA 
antibodies. (f) Nuclear extracts from Ramos cells 
were immunoprecipitated with anti-MYC antibody 
or mouse IgG as a control. The precipitates were 
analyzed by western blotting with anti-STK38/
NDR1, anti-MYC and anti-MAX antibodies.
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(Fig. 2b), suggestive of a post-translational modulation effect.
We proceeded to test two MYC targets in MINDy predictions, BCL2 

and NME1, which are normally repressed by MYC26,27. Consistently 
with what MINDy predicted, both genes were upregulated after STK38 

that methods relying only on known molecular interactions would miss 
the vast majority of TF modulators. Indeed, based on Ingenuity almost 
twice as many modulators (18 versus 11) were found by MINDy among 
proteins not known to interact directly with MYC, compared to those 
having a physical protein-protein interaction.

To focus our analysis on specific molecular functions, we restricted 
candidate modulators to 542 signaling proteins—including protein 
kinases, phosphatases, acetyltransferases and deacetylases—and to 598 
TFs (Online Methods). Among these, MINDy identified 91 signaling 
proteins (Supplementary Table 4) and 99 TFs (Supplementary Table 5), 
respectively, as MYC modulators (FDR = 0.0053). For each modulator, 
virtually all of the ∆I tests inferred the same mode of action (see columns 
“T+” and “T-” in Supplementary Tables 4 and 5) and fewer than 15% of 
the modulators had an ambiguous biological activity.

To assess a lower bound on the fraction of true positives among 
inferred modulators (that is, the precision), we performed manual 
literature curation. Because of the labor-intensive nature of this step, 
we considered only 29 signaling proteins and 35 TFs affecting more 
than 30 MYC targets. Among the former (Table 1), 11 appear as MYC 
modulators in published reports (precision = 37.9%). Similarly, among 
the latter (Table 1), 6 appear in published reports as MYC cofactors 
or antagonists (precision = 17.1%). For TFs with informative binding 
profiles in TRANSFAC24, we tested whether their binding sites were 
enriched in promoters of the modulated targets (Online Methods). 
Fourteen of 35 TFs had appropriate binding profiles, and of these, 11 
were highly enriched. Overall, 17 of 35 TFs (precision = 48.6%) either 
were literature-validated or had enriched binding sites (see Table 1 and 
Supplementary Table 6). This suggests that MINDy’s precision may 
approach that of experimental assays23 when all modulators will be 
experimentally tested.

We then compared the performance of MINDy using literature-based 
targets (DB targets) to that with targets computationally inferred by 
ARACNe (AR targets). Overlap between the two target sets was highly 
significant (P = 2.89 × 10−18) but relatively small (17%). Nonetheless, 
overlap between MINDy-inferred modulators, when using the two tar-
get sets, was almost complete: 93.8% (P = 3.10 × 10−27) among signal-
ing proteins and 95.3% (P = 4.56 × 10−288) among TFs, respectively 
(Supplementary Note 2 and Supplementary Tables 7 and 8). This sug-
gests that the method is highly robust with respect to target selection 
and can be effectively generalized to TFs whose targets are not known 
from the literature but can be inferred computationally.

Experimental validation
We selected four candidates among signaling genes and co-TFs for 
experimental validation, including a kinase (STK38), two TFs (BHLHB2 
and MEF2B) and a deacetylating enzyme (HDAC1). These genes were 
selected based on the availability of reagents allowing the thorough 
validation of their activity and on the diversity of the possible mecha-
nisms by which they may modulate MYC activity. As no single B-cell 
line expressed more than two of the four tested modulators, appropriate 
lines were selected for the silencing experiments among those with the 
highest modulator expression.

STK38 mediates MYC phosphorylation and protein stability
As a first candidate, we validated STK38, a serine/threonine kinase25 
inferred by MINDy as a strong positive modulator of MYC activity, 
affecting 60 targets (Fig. 2a, Supplementary Table 4). We silenced STK38 
by lentiviral vector–mediated short hairpin RNA (shRNA) expression 
in ST486 cells. Although quantitative reverse transcription PCR (qRT-
PCR) analysis showed that MYC mRNA concentration was unchanged 
after STK38 silencing, MYC protein levels were significantly affected 
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Figure 3  BHLHB2 antagonizes MYC activity in B cells. (a) Visualization of 
MINDy output. See Figure 2a for interpretation of this graph. (b) A TERT 
promoter–driven luciferase reporter construct, TERT-Luc800, was transiently 
co-transfected into 293T cells with MYC plasmid and three different doses 
of BHLHB2-FLAG plasmids. pRL-TK plasmid was used as internal control to 
monitor the transfection efficiency. The luciferase activities were measured 
48 h after transfection and normalized against Renilla activity used as 
control (see Online Methods). Each experiment was done in duplicate, and 
data are shown as the mean ± s.e.m. of three independent experiments. (c) 
qChIP assays on ODH-III cells were performed in parallel using equivalent 
number of cells. Chromatin was immunoprecipitated with anti-MYC and 
anti-BHLHB2/DEC1 antibodies or with an irrelevant antibody (rabbit IgG) 
as a control. The precipitated DNA fragments were assessed by quantitative 
PCR, and data are shown as mean ± s.e.m. (d) GSEA enrichment analysis for 
BHLHB2 silencing. Gene expression profiles were generated for five samples 
of ODH-III cells transduced with BHLHB2-specific or control shRNA using a 
lentiviral vector. The x axis represents all probes on the microarray, ranked by 
their absolute differential expression in the cell transduced with the BHLHB2 
shRNA versus the control shRNA. Most differentially expressed genes are 
toward the left. Sorting was based on the value of –log10 of their differential 
expression P values. Blue vertical bars represent all 340 genes in the MYC 
target signature, whereas the red bars represent the 80 MINDy-inferred, 
BHLHB2-modulated subset signature. Color intensity is proportional to the 
density of the bars. Rank of BHLHB2 among differentially expressed genes is 
shown by a tick mark.
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silencing, while the third one, p21CIP1, which is known to be repressed 
by MYC29, was upregulated (Fig. 2c). These results confirm the observed 
target-independent downregulation of MYC at the protein level.

Furthermore, STK38-mediated modulation of MYC affected its phos-
phorylation. Immunoblot analysis of MYC protein in ST486 cells, in the 
presence of an inhibitor of proteasomal degradation (MG132), showed 
accumulation of phosphorylated MYC in cells following STK38 silenc-
ing compared to cells treated with control shRNA, suggesting that STK38 
mediates MYC phosphorylation (Fig. 2d).

Finally, coimmunoprecipitation (co-IP) of epitope-tagged STK38 
(hemagglutinin (HA)-STK38) and MYC (FLAG-MYC), in 293T cells 
transfected with vectors expressing both proteins, showed that STK38 
and MYC interacts at the protein level (Fig. 2e). Immunoprecipitation 
of endogenous MYC using specific antibodies in Ramos cells confirmed 
that the two proteins can interact physiologically in native cells (Fig. 2f). 
These results suggest that STK38 modulates MYC activity by directly 
affecting MYC protein stability.

BHLHB2 is a MYC antagonist
MINDy infers this TF as a negative modulator of MYC activity, affecting 
the regulation of 80 targets (Fig. 3a, Supplementary Table 5). Indeed, 
BHLHB2 is a TF able to bind to E-boxes through its bHLH domain, and 
it has been proposed to act as a transcriptional repressor30, but it has not 
been validated as a MYC antagonist. Thus, we tested whether BHLHB2 
could antagonize MYC-mediated transcriptional activation of its target 
genes by first investigating whether BHLHB2 could affect the transcrip-
tional activation of TERT, a well-characterized MYC target28.

Transient co-transfection in 293T cells of a reporter gene driven by 
a segment of the human TERT promoter region, carrying two E-boxes 
(TERT-Luc80028), and vectors encoding MYC or BHLHB2 showed 
that BHLHB2 represses MYC-mediated transcriptional activation on 
TERT in a dose-dependent manner. This effect is MYC dependent, 
as the basal transcriptional activity of the reporter gene is actually 
moderately increased by BHLHB2 (1.2-fold, Fig. 3b). Thus BHLHB2 
represses MYC-mediated regulation but is not a direct repressor of 
the TERT promoter.

We next analyzed whether endogenous BHLHB2 molecules are physio- 
logically bound to E-boxes within the promoter region of MYC 
target genes in vivo by quantitative chromatin immunoprecipita-
tion (qChIP) assays in B-cells (ODH-III) using antibodies against 
MYC and BHLHB2. The results showed that the promoters of BOP1, 
ATIC, MRPL12, EBNA1BP2 and TERT were bound by both MYC and 
BHLHB2 (Fig. 3c).

To establish the functional significance of BHLHB2-mediated modu-
lation of MYC transcriptional activity, we examined whether shRNA-
mediated inhibition of BHLHB2 could affect the response of the 340 
canonical MYC target genes used in the MINDy analysis or, more spe-
cifically, of the MYC target genes modulated by BHLHB2 as inferred 
by MINDy. The latter signature was used in case the effect was highly 
target specific and thus only a subset of MYC targets might be affected by 
BHLHB2 silencing. To this end, ODH-III cells were transduced with len-
tiviral vectors expressing BHLHB2-specific or control shRNAs. Western 
blot analysis showed that BHLHB2 was effectively silenced, while MYC 
levels were not affected (Supplementary Fig. 4).

We then performed gene expression profile analysis to assess the effect 
of BHLHB2 silencing on the expression of MYC targets. MYC is known 
to both positively and negatively regulate its targets31. Thus, without prior 
knowledge of MYC’s specific activity on each target, we used gene set 
enrichment analysis (GSEA)32 to assess whether MYC target signature 
genes are more differentially expressed than non–MYC target genes fol-
lowing BHLHB2 silencing (Online Methods). The analysis confirmed a 

silencing (Fig. 2c). Additionally, to test whether STK38-mediated MYC 
modulation is target specific, we tested three additional MYC targets 
not inferred by MINDy. The first two, TERT and EBNA1BP2, which are 
known to be activated by MYC4,28, were downregulated following STK38 
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Figure 4  MEF2B enhances MYC activity via protein-protein interaction. 
(a) Visualization of MINDy output. See Figure 2a for interpretation of this 
graph. (b) HA-MEF2B expression vector was transiently transfected into 
293T cells with FLAG-MYC expression vector. At 48 h after transfection, 
immunoprecipitation was performed using the anti-FLAG agarose beads (M2). 
Whole cell extracts and immunoprecipitation eluates were analyzed by western 
blotting with anti-FLAG, anti-HA and anti-MAX antibodies. (c) Nuclear extracts 
from P3HR1 cells were immunoprecipitated with anti-MEF2B serum or with 
rabbit serum as a control. The precipitates were analyzed by western blotting 
with anti-MEF2B and anti-MYC antibodies. (d) A TERT promoter–driven 
luciferase reporter construct, TERT-800Luc, was transiently co-transfected 
into 293T cells with MYC plasmid and three different amounts of HA-MEF2B 
plasmids. pRL-TK plasmid was used as internal control to monitor the 
transfection efficiency. The luciferase activities were measured 48 h after 
transfection and normalized against the Renilla activity. Each experiment 
was done in duplicate, and data are shown as the mean ± s.e.m. of three 
independent experiments. (e) GSEA enrichment analysis for MEF2B silencing. 
Gene expression profiles were generated for five samples of P3HR1 cells 
transduced with MEF2B-specific or control shRNA using a lentiviral vector. 
See Figure 3d for further interpretation of this graph.
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that HDAC1 may modulate MYC activity both by deacetylation of the 
MYC protein and by transcriptional repression of selected targets.

Extension to other TFs
To validate MINDy on a broader range of TFs, we used the algorithm to 
infer all TFs modulated by BHLHB2, MEF2B, HDAC1 and STK38, for 

highly significant enrichment of canonical MYC targets within the dif-
ferentially expressed genes (P < 0.001) (Fig. 3d). Among the 80 MINDy 
inferred BHLHB2-modulated MYC targets, 30 were among the most 
differentially expressed genes. This constitutes approximately a twofold 
increase over their enrichment in non–differentially expressed genes (P = 8 
× 10–5 by FET). MYC mRNA and protein levels were not affected (data not 
shown and Supplementary Fig. 4), indicating a 
post-translational effect. These results validate 
BHLHB2 as an antagonist of MYC activity.

MEF2B is a positive modulator of MYC 
activity
This TF was inferred as a positive modulator 
of MYC activity, affecting 14 MYC targets (Fig. 
4a, Supplementary Table 5). MEF2B is a mem-
ber of the MEF TF family, which interacts with 
the myogenic bHLH proteins MyoD and E12 
to activate gene transcription through direct 
binding to E-boxes on target promoters33. 
Details of the validation assays are provided in 
Supplementary Note 4.

Briefly, similar to our observations with 
BHLHB2, we showed that (i) MEF2B physically 
interacts with MYC both exogenously in 293T 
cells (Fig. 4b) and endogenously in P3HR1 and 
Ramos cells (Fig. 4c); (ii) MYC and MEF2B can 
synergistically activate a TERT reporter gene 
(Fig. 4d); and (iii) genes differentially expressed 
following shRNA-mediated silencing of MEF2B 
were highly enriched in MYC targets by GSEA 
(P < 0.001, Fig. 4e), whereas MYC expression 
was not affected (Supplementary Fig. 5b).

HDAC1 may deacetylate MYC and repress 
MYC targets
Finally, MINDy identified the histone deacety-
lase and well-known transcriptional co-repres-
sor HDAC1(refs. 34,35) as a modulator of MYC 
transcriptional activity on eight MYC targets 
(Fig. 5a, Supplementary Table 4). Experiments 
(see Supplementary Note 5 for details) con-
firmed that (i) HDAC1 and MYC can interact 
in vivo, both exogenously in 293T cells (Fig. 5b) 
as also reported in ref. 36 and endogenously in 
Ramos and P3HR1 cells (Fig. 5c); (ii) genes 
differentially expressed following shRNA-
mediated silencing of HDAC1 were highly 
enriched in MYC targets by GSEA (P < 0.001, 
Fig. 5d), whereas MYC expression was not 
affected (Supplementary Fig. 6a); (iii) HDAC1 
can deacetylate MYC in vitro, following its CBP-
mediated acetylation (Fig. 5e), which has been 
shown to increase MYC’s activity as a transcrip-
tional activator; and (iv) as indicated by qChIP 
assays with anti-MYC and anti-HDAC1 spe-
cific antibodies, both MYC and HDAC1 bind 
to the promoters of p21CIP1 and CR2, which are 
repressed by MYC in B-cells (Fig. 5f).

These results suggest that MYC may recruit 
HDAC1 to repress transcription of specific tar-
get genes. Taken together, our data demonstrate 
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Figure 5  MYC selectively recruits HDAC1 to its targets as co-repressor. (a) Visualization of MINDy 
output. See Figure 2a for interpretation of this graph. (b) FLAG-HDAC1 expression vector was 
transiently transfected into 293T cells with HA-MYC expression vector. At 48 h after transfection, 
immunoprecipitation was performed using the anti-FLAG agarose beads (M2). Whole cell extracts and 
immunoprecipitation eluates were analyzed by western blotting with anti-FLAG and anti-HA antibodies. 
(c) Nuclear extracts from Ramos and P3HR1 cells were immunoprecipitated with anti-MYC antibody or 
rabbit IgG as a control. The precipitates were analyzed by western blotting with anti-HDAC1, anti-MYC 
and anti-MAX antibodies. (d) GSEA enrichment analysis for HDAC1 silencing. Gene expression profiles 
were generated for five samples of P3HR1 cells transduced with HDAC1-specific or control shRNA 
using a lentiviral vector. See Figure 3d for further interpretation this graph. (e) FLAG-MYC and CBP-HA 
expression vectors were transiently transfected into 293T cells to purify acetylated-MYC protein. HDAC1, 
which was also purified from transient transfected 293T cells, was incubated with acetylated-MYC 
protein in vitro. The signal intensities of acetylated-MYC and total amount of MYC were measured with 
the imageQuant 5.2 software. The densitometry histogram on the right shows the percent of acetylated-
MYC normalized by total amount of MYC. (f) qChIP assays on P3HR1 cells were performed in parallel 
using equivalent number of cells. Chromatin was immunoprecipitated with anti-MYC and anti-HDAC1 
antibodies or an irrelevant antibody (rabbit IgG) as a control. The precipitated DNA fragments were 
assessed by quantitative PCR with CR2 and p21CIP1 primers and are shown as mean ± s.e.m.
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not yet been extended to mammalian networks. Finally, comparison 
with a recently introduced algorithm, NetworKIN11, shows that the 
latter is restricted to substrates of only 73 kinases, from 20 families, 
whereas MINDy can be used to dissect post-translational interac-
tions of a much wider nature, including phosphorylation, acetylation, 
chromatin modification, formation of transcription complexes and 
binding-site antagonism, as we have demonstrated here for STK38, 
HDAC1, MEF2B and BHLHB2.

The ability to infer direct and upstream modulators of a desired TF’s 
activity suggests that MINDy may provide highly specific pharmaco-
logical targets for the activation or repression of specific transcriptional 
programs, when modulators are restricted to druggable genes40. This 
could be valuable because TFs are generally considered difficult phar-
macological targets.

Although preliminarily applied to identifying modulators of MYC 
for experimental validation purposes, MINDy has already provided 
biological insights. First, the results indicate that not all modulators can 
influence the program of a TF in a global fashion; they may rather influ-
ence specific subsets of the target genes. This observation suggests that 
additional levels of regulation can influence the relationships between 
modulators and the TFs they control in different cellular contexts or 
depending on different signals. Second, MINDy identified novel mol-
ecules that regulate the activity of the MYC protein. These mechanisms 
may be critically altered in tumors, thus modulating MYC’s established 
oncogenic activity. Finally, MINDy is not limited to dissecting post-
translational interactions and may be applied without modification to 
identify TFs that are directly modulated by microRNAs or indirectly 
by genetic and epigenetic alterations.

Algorithm availability. At manuscript publication, the source code 
and executables for MINDy will be made available under the Open 
Source licensing agreement. Additionally, MINDy will be incorporated 
into the geWorkbench package, which is distributed both by the US 
National Cancer Institute and by the National Center for Biomedical 
Computing at Columbia University (http://wiki.c2b2.columbia.edu/
workbench/index.php/Home).

Note: Supplementary information is available on the Nature Biotechnology website.

METHODS
Methods and any associated references are available in the online version of the 
paper at http://www.nature.com/naturebiotechnology/.

Accession codes. The gene expression profiles are available in GEO (series 
GSE2350, including samples GSM44075-44095, GSM44113-44302 and 
GSM65674-65716).
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which we had already collected gene expression profile data following 
shRNA-mediated silencing (Supplementary Note 6). Specifically, we 
tested (by GSEA) whether their MINDy-inferred targets were enriched 
in differentially expressed genes following lentivirus-mediated shRNA 
silencing of the corresponding modulators. Seventy-five percent of the 
TFs inferred by MINDy as modulated by any of the four modulators with 
support from more than 100 targets, could be experimentally validated 
by the analysis (33 out of 44, P ≤ 5.1 × 10−34) (Supplementary Table 9). 
Furthermore, as one may expect, validation rates increased—from 51% 
(87 out of 171) to 61% (59 out of 96) to 75% (33 out of 44)—when the 
minimum number of MINDy-inferred targets supporting the modu-
lator was increased from 25 to 50 to 100, respectively. In general, these 
results are consistent with the MYC analysis and suggest that MINDy is 
broadly applicable to the analysis of TFs other than MYC.

DISCUSSION
We have introduced MINDy, a new method for the identification 
of context-specific, post-translational modulators of TF activity. 
Literature-based and experimental validation suggests that MINDy 
can recapitulate a large fraction of known MYC modulators and infer 
novel, context-specific modulators of both MYC and other TFs.

For well-studied TFs, targets for the analysis may be selected from the 
literature or by performing genome-wide ChIP assays37,38. However, 
computationally inferred targets performed as well as or better than 
literature-based ones, likely due to their context-specific nature. About 
269 TFs have more than 50 ARACNe-inferred targets using the B-cell 
profiles and may thus be effectively analyzed by MINDy.

Algorithm performance was remarkably robust to candidate target 
selection (DB targets versus AR targets). Additionally, the input data 
required by MINDy is relatively straightforward, requiring only the 
availability of a large gene expression profile dataset (n ≥ 200 profiles) 
characterizing a sufficient variety of naturally occurring or experimen-
tally perturbed cellular phenotypes. This suggests that MINDy can be 
used to analyze most TFs in a variety of cellular contexts.

Several limitations should be noted. First, candidate modulators that 
do not satisfy the range constraint cannot be tested by the method. 
These, however, primarily include either genes that are not expressed or 
genes whose availability is so tightly regulated (for example, housekeep-
ing genes) that variability in the gene expression profiles is too limited 
to establish a low and a high range of expression. Second, candidate 
modulators that do not satisfy the independence constraint may not 
be tested using this approach. In practice, fewer than half (100/233 = 
42.9%) of the Ingenuity modulators were in this category. This is not a 
theoretical limitation of the method but rather an assumption we use to 
increase its sensitivity; thus, if desired, a more general test may be used 
without relying on the assumption I[TF; M] = 0 (Supplementary Note 
1). Additionally, transcriptional modulators of MYC can be directly 
inferred by ARACNe and do not require MINDy. Third, in the rare 
event that the regulatory program of a TF changes from activation to 
repression for specific targets, as a function of a modulator, this may 
not be detected by the algorithm because the mutual information may 
not change substantially. In this case the multi-information could be 
used instead of the conditional (Supplementary Note 1).

MINDy is able to discover large numbers of modulators of the 
same TF. In contrast, finding the optimal Bayesian network structure, 
assuming arbitrary interactions among TF modulators (that is, the 
TF parents in the network topology), would have time and memory 
requirements that are hyperexponential in the number of modulators. 
As a result, dissecting network topologies with large numbers (tens 
to hundreds) of upstream modulators, such as those of MYC, may be 
difficult. Other methods39, although promising in a yeast context, have 
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> 0 (∆I < 0). This indicates only whether M increases or decreases the mutual 
information between TF and t, and does not necessarily correspond to the bio-
logical activity of the modulator (the TF activator or repressor). The latter can 
be assessed for each tested triplet as:

if  ( 
t
 − 

t
 ) > 0+ −

if  ( 
t
 − 

t
 ) < 0+ −

if  ( 
t
 − 

t
 ) ≈ 0+ −

activator

undetermined

antagonist

ρ
ρ
ρ

where ρ is the Pearson correlation between the TF and the candidate target t, 
and 

±
 is the mean expression of t in Lm

±. We assess these differences using a two-
sample Student’s t-test with 10% type-I error rate (two sided). For modulators 
affecting more than one MYC target, the biological mode is labeled as undeter-
mined if the undetermined triplets are the majority (>50%) or if neither mode 
dominates the other by more than 30%. Otherwise it is assigned the dominant 
mode (Supplementary Note 13 and Supplementary Table 12).

GO enrichment analysis. GO molecular function categories with fewer than 20 
and more than 500 genes were excluded. The enrichment of each category was 
computed using the Fisher’s exact test and corrected for multiple testing using 
the method of Storey and Tibshirani43.

Promoter analysis. For TFs with an appropriate DNA binding profile in the 
TRANSFAC professional database (version 6.0)24, we determined the binding-
site enrichment in the promoter regions (defined as 2 kb upstream and 2 kb 
downstream of the transcription initiation site, masked for repetitive elements) 
of the targets they modulate. Sequences were retrieved from the UCSC Golden 
Path database (build 35, May 2004)44. The binding profile match threshold was 
calibrated for a FDR of ≤5% per 1 Kb (in both directions). The binding-site 
enrichment, compared to a 13,000 random human promoter5 background, was 
computed by Fisher’s exact test.

Cell lines and cell culture. The human embryonic kidney 293T cells were main-
tained in DMEM supplemented with 10% FBS and antibiotics. The Burkitt 
lymphoma cell lines, Ramos, P3HR1, ST486 and ODH-III, were maintained in 
IMDM supplemented with 10% FBS and antibiotics.

Plasmids. The mammalian expression vectors encoding MYC and TERT-800Luc 
have been previously described28. The mammalian expression vectors encoding 
BHLHB2/Stra13-FLAG, HDAC1-FLAG and HA-MEF2B were kindly provided by 
R. Taneja (Mount Sinai School of Medicine, New York), S.L. Schreiber (Harvard 
University, Cambridge, Massachusetts) and R. Prywes (Columbia University, 
New York), respectively. HA-STK38 (pcDNA3.1-NDR1-wt) expression vector 
was provided by B. Hemmings (FMI, Basel, Switzerland). MYC-HA and FLAG-
MYC plasmids were constructed by subcloning the corresponding human cDNA 
amplified by PCR into the pcDNA3 (Invitrogen) and pCMV-Tag2A (Stratagene) 
vectors, respectively.

Transient transfection and reporter assays. 293T cells were transiently transfected 
by using the calcium phosphate precipitation method, and luciferase reporter 
assays were performed as previously described45,46. Each transfection was done 
in duplicate, and luciferase activities were measured 48 h after transfection using 
the dual-luciferase reporter assay kit (Promega) according to the manufacturer’s 
protocol.

Co-immunoprecipitation assay and western blot analysis. Nuclear cell extracts 
and whole cell lysates were prepared as previously described47. Proteins were ana-
lyzed by SDS-PAGE and subsequently by western blot using the following anti-
bodies: anti-MYC (C33 and N262), anti-HDAC1 (N-19) and anti-NDR1 (STK38) 
(G15) (Santa Cruz Biotechnology); anti-BHLHB2/DEC1 (BL2928) (Bethyl); anti-
MEF2B (ab33540) (Abcam); anti-STK38 (2G8-1F3) (Novus Biologicals); Flag 
M2 and anti-HA beads (Sigma); and hemagglutinin (Roche).

Quantitative chromatin immunoprecipitation (qChIP). ChIP assays were per-
formed as previously described48,49. Antibodies used were anti-MYC (N-262, Santa 
Cruz), anti-BHLHB2/DEC1 (BL2928, Bethyl) and anti-HDAC1 (AB7028, Abcam). 
The immunoprecipitated chromatin fragments from two independent experi-
ments were pooled together, and the amounts of sample immunoprecipitated  

ONLINE METHODS
Gene expression profile dataset. We used 254 gene expression profiles previously 
generated by our labs for several studies of normal and tumor-related B-cell 
phenotypes using the Affymetrix HG-U95Av2 GeneChip System (approxi-
mately 12,600 probes)13,14. The gene expression profiles are available in GEO 
(series GSE2350, including samples GSM44075-44095, GSM44113-44302 and 
GSM65674-65716). Probe sets with expression mean µ < 50 and s.d. σ < 0.3µ 
were considered uninformative and were therefore excluded, leaving 7,907 probe 
sets for the analysis. Supplementary Table 10 summarizes the 17 B-cell pheno-
types included in this study.

Synthetic network. The synthetic network models two post-transcriptional 
modifications of a TF, affecting its regulatory behavior (Fig. 1b). It includes 
the transcription factor (TF), an activating protein kinase (K), a cofactor (cTF) 
forming a transcriptionally active complex with the TF and three downstream 
TF targets. The full kinetic model is described in Supplementary Table 11. 250 
synthetic expression profiles were generated from this model by (i) randomly 
sampling the TF, K and cTF mRNA concentration from independent normal 
distributions (µ = 4 and σ = 1), (ii) simulating network dynamics until a steady 
state was reached and (iii) measuring the mRNA concentration of the represented 
species with a multiplicative Gaussian noise (µ = 0 and σ = 0.1µ).

Candidate modulators. The statistical test for the ‘range constraint’ is defined 
in Supplementary Note 7. The statistical significance test for the independence 
constraint is based on the mutual information, as described in ref. 41 (see also 
Supplementary Notes 8 and 9).

For the category-specific analysis, we further selected 542 signaling pro-
teins (GO molecular function: “protein kinase activity,” “phosphoprotein 
phosphatase activity,” “acetyltransferase activity” and “deacetylase activity”) 
and 598 TFs (GO molecular category: “transcription factor activity”) as can-
didate modulators.

MINDy inference. Given a triplet (TF, M, t), with t ≠ TF and t ≠ M, MINDy 
assesses whether the conditional mutual information, I[TF;t | M], is con-
stant as a function of M. Assuming that the conditional mutual information 
is a monotonic function of M (see Supplementary Note 10), this can be effi-
ciently tested by measuring ∆I = I [TF;t | M ∈ L

m 
] −I [TF;t | M ∈ L

m
] ≠ 0+ −

,  
where L

m

+ and L
m

− represent two subsets of the samples where M is respectively 
most and least expressed. For this dataset Lm

± is chosen to be 35% of the samples by 
optimizing the effect of B-cell receptor pathway genes (which is known to modu-
late MYC activity42) on regulating canonical MYC target genes (Supplementary 
Note 11 and Supplementary Fig. 7). Mutual information was computed using 
the Gaussian kernel estimator of ref. 41 (Supplementary Note 8). The P value 
corresponding to a specific ∆I is obtained by permutation tests (Supplementary 
Note 1 and Supplementary Fig. 3), Bonferroni-corrected for the total number of 
tested target-modulator pairs. If a candidate target list is not provided, triplets are 
further pruned if there exists a third gene, x, such that I [TF;x] ≥ [TF;t] and I [t;x] 
≥ [TF;t] in both Lm

±, showing an indirect relationship between TF and t mediated 
by x, as suggested by the data-processing inequality41 (Supplementary Note 12 
and Supplementary Fig. 8).

Modulator minimum support. Once all (TF, M, t) triplets have been processed, 
modulators are selected based on their support—that is, the number of distinct 
TF targets they modulate. The minimum support is determined using a permuta-
tion test procedure where an identical MINDy run is performed on the same set 
of candidate modulators and candidate targets except that L

m

+ and L
m

− are chosen 
at random. This produces a permutated set of MINDy inferences, on the basis 
of which we can compute the modulator support under the null. The minimum 
support is then selected as the support that gives the smallest FDR (the ratio 
between the numbers of selected modulators in the permutated run versus the 
real run). For MINDy analysis based on DB targets, 15 was determined as the 
minimum support searching for modulators among all genes, and 7 if candidate 
modulators are restricted to only signaling proteins and TFs. For MINDy analysis 
based on AR targets, the minimum support is determined to be 8 when candidate 
modulators are selected among signaling proteins and TFs.

Modulator mode of action and biological activity. For each significant triplet, 
we define M as a positive (negative) modulator of the TF → t interaction if ∆I 
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shRNA samples was analyzed using two-sample t-test. For the GSEA analysis 
probe sets were sorted in decreasing order by the –log10 of their t-test P values. 
Readers are referred to ref. 32 for details of the GSEA algorithm. In the GSEA 
plot, specific targets (MYC- or MINDy-signatures) are shown as vertical bars 
against the background of all B cell–expressed genes in the expression profiles, 
sorted from the most to the least differentially expressed following silencing of 
the candidate modulator. The curve represents a random walk where the value 
on the y axis is increased proportionally each time the gene on the x axis is one 
of the selected targets and decreased if it is part of the background. Weights are 
chosen proportionally to the statistical significance of the differential expression 
and to the relative number of targets in the signatures versus the background 
list, such that the curve starts and ends at y = 0. The statistical significance of the 
GSEA statistics (that is, the maximum height of the curve, called the enrichment 
score, ES) was determined by permutation test where the ranks of the probe sets 
were randomly shuffled 1,000 times. To determine the enrichment of MINDy-
predicted modulator-specific targets of MYC among the differentially expressed 
genes, probe sets that rank before the GSEA leading edge (the increasing phase 
of GSEA profile) were determined to be significantly differentially expressed, and 
the enrichment was calculated using the Fisher’s exact test.
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by individual antibody were assessed by quantitative real-time PCR. The oligo-
nucleotide pairs are listed in Supplementary Table 13.

In vitro de-acetylation assay. FLAG-MYC and CBP-HA expression vectors were 
transiently transfected into 293T cells. Acetylated-FLAG-MYC was purified with 
FLAG-beads. FLAG-HDAC1 was purified by FLAG-beads from 293T cells tran-
siently transfected with FLAG-HDAC1 expression vector. Acetylated-FLAG-MYC 
and FLAG-HDAC1 were incubated at 30 °C for 2 h in a buffer containing 50 mM 
Tris-HCl, 50 mM NaCl, 4 mM MgCl2, 0.5 mM DTT, 0.2 mM PMSF, 0.02% NP-40 
and 5% glycerol with or without 2 µM trichostatin A (TSA)  for inhibition of 
HDAC1 activity.

shRNA and lentiviral infections. Lentiviral vectors for BHLHB2 shRNA 
(TRCN0000013249), MEF2B shRNA (TRCN0000015739), HDAC1 shRNA 
(TRCN0000004818), STK38 shRNA (TRCN0000010216) and non-target control 
shRNA (SHC002) were purchased from Sigma. Lentiviral supernatants were pro-
duced by transiently co-transfecting the lentiviral vectors, the packaging vector 
delta 8.9 and the VSV-G envelope glycoprotein vector as previously described50,51. 
For infection, ODH-III, P3HR1 and ST486 cells (2 × 106 cells/ml) were mixed 
with viral supernatants, supplemented with 8 µg/ml polybrene and centrifuged 
for 120 min at 450g. The ODH-III and ST486 cells were collected for analysis 96 
h and 60 h after infection, respectively. The lentiviral-infected P3HR1 cells were 
selected with puromycin (0.5 µg/ml) for 5 d and collected for analysis.

qRT-PCR analysis. Polymerase chain reaction with reverse transcription 
(RT-PCR) analysis was performed using FastLane Cell cDNA Kit (Qiagen) 
according to the manufacturer’s instructions. qRT-PCR was performed with 
Quanti Tect SYBR Green PCR kit (Qiagen) using the 7300 Real Time PCR systems 
(Applied Biosystems) according to manufacturer’s instructions. The oligonucle-
otide primers are described in Supplementary Table 13.

Gene-expression profiling after lentiviral mediated silencing of the modulator 
gene. For each modulator of interest, five samples infected with the modulator-
specific shRNA and five infected with non-target control shRNA were obtained. 
Total RNA was extracted with Trizol reagent (Invitrogen) and purified using the 
RNeasy kit (Qiagen). Biotinylated cRNA was produced according to the manu-
facturer instructions, starting with 6 µg of total RNA and following the one-cycle 
cDNA synthesis protocol (Affymetrix, 701025 Rev.6). Fifteen micrograms of frag-
mented cRNA were hybridized to HG-U95Av2 microarrays (Affymetrix).

Expression profile data analysis. We determined the gene expression values by 
the MAS5.0 normalization method provided in Affymetrix’s GeneChip Operating 
Software (GCOS). Differential expression between modulator shRNA and control 
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