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ABSTRACT Transcriptional regulation is an inherently noisy process. The origins of this stochastic behavior can be traced
to the random transitions among the discrete chemical states of operators that control the transcription rate and to finite
number fluctuations in the biochemical reactions for the synthesis and degradation of transcripts. We develop stochastic
models to which these random reactions are intrinsic and a series of simpler models derived explicitly from the first as
approximations in different parameter regimes. This innate stochasticity can have both a quantitative and qualitative impact
on the behavior of gene-regulatory networks. We introduce a natural generalization of deterministic bifurcations for classi-
fication of stochastic systems and show that simple noisy genetic switches have rich bifurcation structures; among them,
bifurcations driven solely by changing the rate of operator fluctuations even as the underlying deterministic system remains
unchanged. We find stochastic bistability where the deterministic equations predict monostability and vice-versa. We derive
and solve equations for the mean waiting times for spontaneous transitions between quasistable states in these switches.

INTRODUCTION

The rate at which proteins are synthesized from individual
genes is tightly regulated. In prokaryotes, this regulation is
accomplished in part by the binding of regulatory proteins
to stretches of DNA upstream (by definition) of the protein-
coding region of the gene. Regulatory proteins can either
inhibit or facilitate the binding of RNA polymerase to DNA
or facilitate the isomerization of the DNA–RNA polymerase
complex into a transcriptionally competent state. RNA
polymerase processes along the DNA, transcribing the
DNA into messenger RNA (mRNA). A ribosome can asso-
ciate with mRNA and begin translation of the mRNA into
an amino acid sequence as soon as a complete ribosome
binding site emerges from the RNA polymerase. Transla-
tion can occur many times per transcript. The canonical
introduction to this subject remains the monograph of
Ptashne (1992).

In eukaryotes, regulatory proteins, referred to as tran-
scription factors, are also used as one method of controlling
gene expression. Another form of eukaryotic regulation
occurs through chromatin–DNA interactions. In general,
transcriptional regulation in eukaryotes is more complicated
than in prokaryotes. However, we believe the results pre-
sented in this manuscript are relevant to both types of cells.

In this manuscript, we adopt the terminology used in
studying prokaryotes and use “operator” to refer to up-
stream regulatory DNA sites. The term “promoter” refers to
the nucleotide sequence to which RNA polymerase binds to
begin transcription. Single genes may have multiple opera-
tors that can overlap with the promoter. The operator is said

to be in an occupied state if a regulatory protein is bound to
it and unoccupied otherwise. Chemical reactions that
change the state of the operator are referred to as operator
fluctuations. One of the main goals of this manuscript is to
understand the role of operator fluctuations in transcrip-
tional regulation. The mathematical methods developed
here also directly apply to eukaryotic systems that regulate
gene expression through transcription factors or chromatin–
DNA interactions.

Much previous mathematical modeling of transcriptional
regulation represents the production of gene product as a
deterministic process (for a review, see Hasty et al., 2001b).
In these models, both the gene-product concentration and
operator state are treated as continuous. The probability of
an occupied operator is given by a function of the regulatory
protein concentration that is computed using thermody-
namic arguments (Shea and Ackers, 1985).

In fact, however, there is now considerable experimental
evidence that indicates the presence of significant stochas-
ticity in transcriptional regulation in both eukaryotes and
prokaryotes. In particular, several recent experiments on
mammalian cells have supported the idea that gene initia-
tion in response to an inductive signal is a stochastic process
(Weintraub, 1988; van Roon et al., 1989; Fiering et al.,
1990; Ko et al., 1990; Dingemanse et al., 1994; Walters et
al., 1995). Additionally, there is evidence that chromatin–
regulated gene expression is stochastic (Ahmad and Heni-
koff, 2001; Wijgerde et al., 1995) and that the initiation and
deactivation of pigment expression during melanocyte dif-
ferentiation proceeds in a random fashion (Bennett, 1983).
Finally, studies on engineered gene circuits, which have
been designed to act as toggle switches and oscillators, have
revealed large stochastic effects (Elowitz and Leibler, 2000;
Gardner et al., 2000; Becskei et al. 2001).

Several recent papers have reported theoretical investiga-
tions into the effects of fluctuations in gene regulation.
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Thattai and van Oudenaarden (2001) used simple models of
transcription and translation to derive expressions for the
means and variances of mRNA and protein number that
compare favorably with experimental results. Using Monte
Carlo simulations, McAdams and Arkin (1997) studied a
more detailed model of these processes that also takes into
account ribosome–RNase binding competition. Neither of
these two investigations considered fluctuations in the state
of the operator. Simple models that take into account fluc-
tuations between active and inactive genetic states have
been studied and used to explain induction-level heteroge-
neity among individual cells expressing steroid-inducible
genes (Ko, 1991, 1992), and to support the conjecture that
haploinsufficiency disease arises from stochastic gene ex-
pression (Cook et al., 1998). In these models, transcription
and translation proceed deterministically while the gene is
on. Additionally, these investigations relied on computer
simulation and did not fully explore the consequences of
fluctuations in regulated systems.

Numerical simulations of complete genetic networks
have also been carried out. For instance, Arkin et al. (1998)
considered a detailed stochastic model for the initial deci-
sion between the two developmental pathways (lysis and
lysogeny) of bacteriophage �. However, in this investiga-
tion the chemical kinetics of the operator fluctuations was
assumed to be fast. This assumption allowed the operator
states to be treated deterministically using a quasi-steady-
state approximation. The role of noise has also been con-
sidered in engineered gene networks (Hasty et al., 2000,
2001b). In this work, fluctuations were added post-hoc to
deterministic rate equations, and, therefore, the noise
strength was an adjustable parameter.

Our aim here is to consider the origins of intrinsic fluctua-
tions and to develop appropriate representations for them
within the context of de novo stochastic models. We further
consider a set of simplifying approximations found in various
parameter limits, eventually arriving at deterministic models.
Because our method starts from a microscopic description of
the process, all the parameters in the approximate models are
defined in terms of the underlying chemical rate constants. Our
approximate schemes are important for two reasons. First, they
provide insight into the dynamics of the system that cannot be
gained from Monte Carlo simulations of the full model; and,
second, numerical simulations using the approximate schemes
can run orders of magnitude faster than Monte Carlo simula-
tions of the full process.

In the first two sections and in the appendices, we present
the mathematical techniques for manipulating the models.
These methods are then used to examine the consequences
of fluctuations in regulatory systems: 1) Noise destabilizes
genetic switches. We compute the mean first passage times
for a simple single-gene switch and examine their behavior
under variations of several parameters, particularly the rate
of operator transitions. 2) The destabilization of switches
makes it necessary to generalize the notion of bifurcations.

We examine stochastic bifurcations (Horsthemke and Lefe-
ver, 1984), qualitative changes in the probability density
function under changes in parameters, again, with special
attention to those bifurcations induced solely by changes in
the rate of operator transitions.

We start by considering a simple model without feedback
to establish our methods, then move on to a switching
system consisting of a single self-promoting gene, and fi-
nally to a switching system composed of two mutually
repressing genes.

SINGLE GENE, NO FEEDBACK

We begin with a model for a gene that has no feedback,
direct or indirect, onto its own transcriptional regulation.
Similar models have been used to study steroid-inducible
genes (Ko, 1991, 1992) and haploinsufficiency disease
(Cook et al., 1998). The simplicity of this model allows us
to present the techniques we use for the analysis of regu-
lated systems in a direct manner, uncomplicated by nonlin-
earities. The state space of the model consists of the number
of gene product monomers (an integer variable) and the
state of the gene’s operator (binary). We use the term “gene
product” to account for the lumping of mRNA and protein
in this treatment.

The events that occur in this model can be represented as
biochemical reactions (Fig. 1), and the master equation derived
directly from that representation. In this manuscript, we adopt
the following notational conventions. Uppercase calligraphic
letters denote a molecule of a particular protein species or an
operator (e.g., � for a monomer and � for an operator).
Uppercase letters represent state variables that denote the cur-
rent number of molecules of a particular protein species or the
current chemical state of the operator. Lowercase letters denote

FIGURE 1 A schematic diagram illustrating transcriptional regulation
without feedback. The operator has two possible states, occupied and
unoccupied, and fluctuates between them. If the operator is empty, protein
monomers � are produced at a rate �0; if the site is occupied, the
production rate is �1. The operator does not affect the degradation of the
protein product, which occurs with rate �. We assume that the activator
concentration is constant.
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any allowed value of their uppercase counterparts. Because the
state variables are pure numbers, all the rate constants have
units of inverse time and are reported here as per second.
Concentrations are formed by dividing the mean number of a
protein species by the relevant volume (e.g., the cell volume).
In this case, second-order rates constants would have units of
1/(time � concentration).

The degradation of gene product is written as

� ¡
�

A, (1)

where � represents the monomer form of the expressed
protein, � is the degradation rate, and A is used to denote a
protein sink. We also use A to denote a protein source.

We write the spontaneous transitions between operator
states, denoted �0 (occupied) and �1 (unoccupied), as

�0 L|;
k0K

k1K

�1, (2)

where the rate K sets the time scale for this reaction. The
constants k0 and k1 are dimensionless and constrained to
obey k0 � k1 � 1.

The reaction for the production of protein is written as

A O¡
�s

� (3)

where rate �s (s � 0 or 1) depends on the chemical state of
the operator. It is important to recognize that this simple
reaction is an effective reaction representing a large number
of component reactions together making up transcription,
translation of mRNA into polypeptides and the folding of
these polypeptides into proteins.

In this treatment, we distinguish two sources of stochas-
ticity: operator fluctuations, and the combined action of
transcription per se and degradation of protein product. In
both cases, the variability results from the inherent discrete-
ness of the state space and the randomness in the dwell time
between discrete reactions. (Below, we will consider a
further source of variability in the reaction in which gene
product monomers interact to form dimers, although our
discussion will serve primarily to indicate why these dimer
fluctuations can be neglected.)

At any given time t, the state of the system described by
reactions 1–3 is specified by the number of monomer pro-
teins M(t) and the chemical state of the operator S(t). S(t) is
equal to 0 if the operator is unoccupied and 1 if it is
occupied. Thus, the various states of the system can be
written as the ordered pair (m, s), where m is a non-negative
integer and s is either 0 or 1. M(t) and S(t) are random
variables, because the chemical reactions that change the
state of the system occur randomly in time. If we assume
that the dwell time in any particular chemical state of the
system is exponentially distributed, then the system satisfies

the Markov property. Physically, this means that the time
evolution of the system is determined solely by its current
state and is independent of its past. The Markov property
allows us to write down a master equation for the time
evolution of the probabilities pm

s (t) � Pr[M(t) � m and
S(t) � s] (van Kampen, 1992). Simply put, the master
equation is a rate equation for pm

s (t). Written out explicitly,
the master equation for this process has the form

dpm
0

dt
� ��Kk0 � �m � �0�pm

0 � Kk1pm
1

� ��m � 1�pm�1
0 � �0pm�1

0 , (4)

dpm
1

dt
� ��Kk1 � �m � �1�pm

1 � Kk0pm
0

� ��m � 1�pm�1
1 � �1pm�1

1 , (5)

where we have suppressed the explicit time dependence of
pm

s (t) for readability. The first term on the right-hand side of
Eqs. 4 and 5 represents the rate at which probability is
flowing out of the state (m, s). It is the product of the
average rate, (Kks � �m � �s), at which transitions occur
out of (m, s) and the probability pm

s (t) of being in (m, s).
Correspondingly, the other three terms on the right-hand
side of these equations represent the rates at which proba-
bility flows into (m, s) from accessible states.

Although the notation used in Eqs. 4 and 5 makes these
equations easy to interpret, it quickly becomes unmanage-
able as the systems become more complex. Therefore, we
will adopt a more compact notation and combine these
equations as

dpm
s

dt
� �s�pm�1

s � pm
s �

� ���m � 1�pm�1
s � mpm

s � � K�kŝpm
ŝ � kspm

s �,

(6)

where the hatted index indicates “the other one”: ŝ � (s �
1) mod 1.

The partial moments, defined for integer j, are

	mj
s � �
m

mjpm
s . (7)

Note that the zeroth moments 	m0
s are the marginal prob-
abilities for the operator to be in state s. The moments are
then the sums over operator states of the partial moments,

	mj
 � 	mj
0 � 	mj
1. (8)

We can use Eq. 6 to derive ordinary differential equations
(ODEs) for the time evolution of the partial moments (van
Kampen, 1992). Because the reactions are all zeroth- and
first-order, the ODEs for the partial moments factorize into
independent pairs of linear equations, which can easily be
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solved. Here we are interested only in the steady-state
values of the first moment and the variance,

m* � 	m
 �
1

�
��0k1 � �1k0� (9)

and

Varm � m* � k0k1��0 � �1

� �2 �

� � K
, (10)

where the overbar indicates the steady-state value. Under
the given circumstances, we expect the first factor in the
product on the right side of Eq. 10 to be of order one, the
second factor to be of order m*

2 and the order of the third to
depend on the relative rates of product decay, � and operator
transitions K. When product decay is much faster than
operator transitions, the last factor is of order one and the
variance is dominated by the second term, of order m*

2.
When the operator transitions are much faster, the last factor
is very small, and the variance approaches the mean.

An appropriate measure of the relative size of the fluc-
tuations is the coefficient of variation, which is defined as
the ratio of the variance to the mean squared. The steady-
state coefficient of variation can be written as

CV �
Varm

m*
2 �

1

m*
� k0k1

�

� � K � ��0 � �1�

�0k1 � �1k0
�2

. (11)

Note that, as the average number of monomers increases,
the first term in the CV decreases. Even with large protein
numbers, however, the CV can still be large due to fluctu-
ations in the operator state. As these operator fluctuations
become faster, the second term decreases as well. This
stabilizing effect of fast operator fluctuations has been ob-
served in computer simulations of stochastic gene expres-
sion (Cook et al., 1998). Below, we construct approxima-
tions to the dynamics for cases in which the product number
is large or the operator fluctuations are fast.

Small-noise and fast-transition approximations to
the master equation

For cases in which there is feedback regulation, we generalize
Eq. 6 to include state-dependent transition rates and nonlin-
earities. When this is done, the moment equations no longer
factorize. Numerical solutions can be difficult to obtain as well,
especially when several genes are considered as part of a
regulatory network. Therefore, we develop approximations to
Eq. 6 that can be generalized immediately to the nonlinear
cases of feedback regulation and are valid as one or the other
source of variability becomes negligible.

Large steady-state gene-product level

When the protein abundance given by Eq. 9 is large com-
pared to one, we can use a diffusion approximation for Eq.

6. In the section, Escape Times, we present an example in
which this diffusion approximation is accurate with m* as
small as 25. We start by defining an appropriately scaled
continuous variable for the monomer number. This variable
is given by

X �
M

m*
. (12)

As defined here, X is dimensionless, though we shall often
refer to it as a concentration. To convert to an actual
concentration, in Eq. 12 replace m* by the cell volume in
appropriate units. We define the probability density func-
tion �s(x, t) such that

pm
s �t� � �

(m�1/2)/m*

�m�1/2�/m*

dx�s�x, t�. (13)

One way to arrive at the diffusion approximation is to
note that, by appropriately rearranging terms in Eq. 6, this
equation can be recast in a form that is identical to a
second-order finite differencing of the diffusion equation.
However, it is possible to quickly arrive at the same result
through use of a Taylor series expansion. The Taylor series
for a function g(x) about x is

g�x � u� � �
j

1

j!
��x�

jg�x�uj � eu�xg�x�, (14)

where �x is shorthand for the partial derivative with respect
to x. The last equality in the above expression defines the
shift operator eu�x, which translates g from x to x � u.

Changing variables and using the shift operator in Eq. 6,
we get the equations of motion for �s,

�t�s�x� � �s�e
�(1/m*)�x � 1��s�x�

� �m*�e�(1/m*)�x � 1�x�s�x�

� K�kŝ�ŝ�x� � ks�s�x��. (15)

The Taylor series that defines the shift operator can be
truncated without incurring large errors when the size of the
translation is sufficiently small. In our case, if 1/m* is small
enough, we can neglect terms of third order and higher to
obtain the diffusion approximation,

�t�s�x� � ��x�� �s

m*
� �x��s�x��

�
1

2m*
�x

2�� �s

m*
� �x��s�x��

� K�kŝ�ŝ�x� � ks�s�x��. (16)

Stochasticity in Gene Regulation 3119

Biophysical Journal 81(6) 3116–3136



In the limit, as m*3 �, the only stochasticity remaining
is that due to the operator fluctuations. The master equation
in this limit becomes

�t�s�x� � ��x�� �s

m*
� �x��s�x�� � K�kŝ�ŝ�x� � ks�s�x�� ,

(17)

where the term �s/m* is order �. The above equation can be
interpreted in the following way. In each state of the oper-
ator, the concentration evolves deterministically according
to the equation,

dx

dt
�

�s

m*
� �x. (18)

However, the effective rate at which protein is made �s/m*
fluctuates randomly in time between high (s � 1) and low
(s � 0) levels. A generalization of this system, allowing for
multiple operators and operator states is discussed in detail
in Appendix B.

Fast operator fluctuations

The variance due to operator transitions decreases as the
rate of these transitions increases and their characteristic
time becomes much smaller than those of the rest of the
system; these fluctuations are effectively averaged out over
the longer time scales (Cook et al., 1998). We take advan-
tage of this effect to construct an approximation to the
dynamics that is accurate when the fluctuations in the op-
erator state are fast, but finite.

To apply these methods, we re-express Eq. 6 in terms of
the marginal probability function pm � pm

0 � pm
1 and the

difference 	m � k0pm
0 � k1pm

1 ,

dpm

dt
� ��0k1 � �1k0��pm�1 � pm�

� ���m � 1�pm�1 � mpm�

� ��0 � �1��	m�1 � 	m�, (19)

d	m

dt
� �K	m � �k0�0 � k1�1��k0 � k1��	m�1 � 	m�

� ��k0 � k1�
2��m � 1�	m�1 � m	m�

� k0k1��1 � �0��pm�1 � pm� (20)

When K is very large compared to �1 and �m*, 	 reaches a
rapid quasi-equilibrium for any value of p. This is realized
mathematically by setting the derivative in Eq. 20 equal to
zero. The resulting expression for 	 is then substituted back
into Eq. 19 with the result being the approximate equation

of motion for pm,

dpm

dt
� (�0k1 � �1k0)�pm�1 � pm�

� ��m � 1�pm�1 � mpm�

�
1

K
k0k1��0 � �1�

2�pm�2 � 2pm�1 � pm�. (21)

The last term is a second-order finite difference centered on
m � 1 (rather than on m). It acts as a diffusion term,
producing the same dynamics for the mean and variance as
the “usual” finite difference centered on m. Although the
higher moments differ in these two cases, as m* increases,
these difference are multiplied by steadily decreasing fac-
tors and vanish as m*3 �. As K3 �, we obtain a simple
Poisson process with degradation, with the instantaneous
rate of transcription equal to the equilibrium average �0k1 �
�1k0.

Simultaneous limits

We can apply these approximations simultaneously. The
diffusion approximation applied to Eq. 21 gives the same
result as the fast-noise approximation applied to Eq. 16.
Taking the marginal density � � �0 � �1 on x as the
dynamical object (see Appendix B for more details), we
find

�t��x� � ��x�A�x���x�� � 1
2

�x
2B�x���x�, (22)

where

A�x� � ��1 � x� �
1

K
, (23)

B�x� � 2
1

K
k0k1��0 � �1�

2 �
1

m*
��1 � x�. (24)

When the approximations that led to Eq. 22 are appropriate,
one advantage of this formulation is that an expression for
the steady-state density in terms of a simple quadrature can
be found,

�� �x� �
�

B�x�
exp�1

2�
0

x A�x��

B�x��
dx�� , (25)

where the overbar is again used to indicate steady state, and
� is a normalization constant. Another advantage is that
sample paths of the process described by Eq. 22 can be
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generated from the stochastic differential equation

dX

dt
� A�X� � �B�X�
�t�, (26)

where 
(t) is a Gaussian white noise process. (We are using
the Ito interpretation of the stochastic integral. There is no
ambiguity with this choice, because Eq. 22 defines the
stochastic process. We choose the Ito interpretation because
it is straightforward to implement numerically.) Sample
paths generated from this equation can run orders of mag-
nitude faster than Monte Carlo simulations of the full pro-
cess.

In the limit, as both m* and K become infinite, the noise
term in Eq. 26 goes to zero, and this equation becomes the
deterministic rate equation,

dx

dt
� A�x� � ��1 � x�. (27)

For the simple example we are considering (and indeed for
all linear systems), the above expression is identical to the
equation for the first moment derived directly from the
underlying master equation. For nonlinear systems, the two
equations differ. However, from Eq. 26, we can perform a
small-noise expansion to find

d	X


dt
� 	A�X�
 � A�	X
� �

1

2

d2A

dx2 �	X
�Var�X� � · · ·.

(28)

So the simple deterministic rate equation is appropriate
when A�(	X
)Var(X) is much smaller than A(	X
).

REGULATED SYSTEMS I: SELF-PROMOTER

We now consider a system in which the gene product is
itself an activating regulatory protein for its gene. This
system is regulated by positive feedback. This type of
regulation is thought to play a role in the developmental
decision pathway of bacteriophage � (Ptashne, 1992) and
has been used to construct a synthetic eukaryotic gene
switch in Saccharomyces cerevisiae (Becskei et al., 2001).
Here we study a minimal version of a system with positive
feedback, which serves to illustrate the qualitative features
of this type of regulation. For a more biologically complete
treatment of the lysis/lysogeny decision pathway, the reader
is referred to the pioneering work of Arkin et al. (1998). The
system we consider is similar to that shown in Fig. 1, only
now the activator is the gene’s own product. After devel-
oping the models for this system and exploring the conse-
quences of noise for bifurcations and spontaneous transi-
tions in this system, we will come back to explore a second
bipolar switch involving a pair of mutually repressing pro-
teins.

Regulatory proteins often bind to their operators as
dimers or higher-order oligomers (Ptashne, 1992). We as-
sume that the active form of the protein in our system is a
dimer. Thus, we explicitly consider the dimerization reac-
tion and the stochasticity associated with it.

Letting � represent a protein dimer, the dimerization
reaction is

� � �L|;
�

��

�, (29)

where � is the dimensionless equilibrium dissociation con-
stant, and � is the forward rate constant.

The operator transition reaction, Eq. 2, is now modified to
explicitly include the role of the protein dimer

�0 � �L|;
K

�K

�1, (30)

where K is now the forward transition rate and � is the
dimensionless dissociation constant for this reaction. The
other reactions remain as given above, except that we must
specify the rate at which dimers are degraded. For simplic-
ity, we have made the arbitrary choice that dimers are not
degraded at all. That is, only the monomer form of the
protein is unstable. Inclusion of an arbitrary dimer degra-
dation is easily accommodated. Our choice does not have
qualitative implications for this analysis within the range of
parameter variation considered.

Let D(t) represent the number of dimers and N(t) the total
protein number at time t. Then we have M(t) � N(t) �
2D(t). The master equation for this process is

dpn,d
s

dt
� ���n � 1 � 2d�pn�1,d

s � �n � 2d�pn,d
s �

� �s�pn�1,d
s � pn,d

s �

� ���n � 2d � 2��n � 2d � 1�pn,d�1
s

� �n � 2d��n � 2d � 1�pn,d
s �

� ����d � 1�pn,d�1
s � dpn,d

s �

� ��1�sK��pn,d
1 � dpn,d

0 �, (31)

where pn,d
s � Pr[N(t) � n, D(t) � d, and S(t) � s]. It is

straightforward to generate sample paths of the “full” process
described by the equations given above (see Fig. 6). These
Monte Carlo simulations are usually computationally inten-
sive, because the time scales of the various reactions involved
can be very different. Therefore, we make use of the limiting
cases discussed above to construct approximations to the mas-
ter equation that are less computationally intensive and provide
insight into the dynamics of the system.
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The reaction given by Eq. 29 is generally assumed to be
fast compared to all other reactions (McAdams and Arkin,
1997; Hasty et al., 2000, 2001a). Physically, this means that
the monomer and dimer concentrations come to quasi-
equilibrium before the total amount of protein changes
appreciably. In Appendix A, we show how this assumption,
along with the assumption that the coefficient of variation of
D conditional on N is small, allows us to eliminate the dimer
concentration from the problem. In this limit, we get the
master equation, written in terms of the marginal density on
M (In an abuse of notation, we let the marginal on M be
represented as pm

s and rely on the subscript itself to distin-
guish this probability distribution from that of N).

dpm
s

dt
� �[(m � 1)pm�1

s � mpm
s ] � �s�pm�1

s � pm
s �

� ��1�sK��pm
1 �

m�m � 1�

�
pm

0 � . (32)

To arrive at this simple set of equations, it is necessary to
assume that the dissociation constant for dimerization is
large. Although this is not necessarily the regime of biolog-
ical interest, it serves to simplify the presentation consider-
ably and is the regime commonly used, usually implicitly,
by other researchers. As discussed in detail in Appendix A,
all the analyses presented below can be carried through
when this assumption is relaxed; the qualitative nature of
the results do not change. A direct comparison with exper-
imental data, however, requires the more general treatment
presented in Appendix A.

To move to the diffusion limit, we change to the dimension-
less variables u � �t and X � M/mo, where mo � �1/� is the
steady-state value of the mean monomer number for the sys-
tem locked in the occupied state. In terms of these variables,
the diffusion limit for large protein number produces

�u�s�x� � ��x��as � x��s�x� �
1

2mo
�x�as � x��s�x��

� ��1�s�b�1�x� � x2�0�x��, (33)

where the rescaled parameters are a1 � 1, a0 � �0/�1,  �
K�1

2/(��3) and b � ���2/�1
2.

As mo 3 � the fluctuations in the monomer concentra-
tion become negligible; Eq. 33 loses its diffusive terms and
can be written as

�u�s�x� � ��x�as � x��s�x�

� ��1�s�b�1�x� � x2�0�x��. (34)

All of the stochasticity in this system now derives from the
operator fluctuations. The key difference between the above
equation and Eq. 17 is the appearance of the x2 factor
multiplying �0(x) in Eq. 34. As will be seen, this factor is

responsible for the bistable behavior observed in the mac-
roscopic limit of this system.

One useful feature of Eq. 34 is that an explicit expression for
the steady-state marginal density �� � ��0 � ��1 can be found,

�� �x� � � exp	�a0x �
x2

2 �

� �x � a0�

a0
2�1�1 � x�b�1, (35)

where � is a normalization constant. Below, we discuss how
this distribution undergoes bifurcations as a result of the
fluctuations in the operator state.

Next, we consider the small-noise limit of the fluctua-
tions in the monomer concentration and the fast-noise limit
of fluctuations in the operator state. That is, both mo and 
are taken to be large, but finite. In Appendix B, we present
a general algorithm for deriving an effective diffusion equa-
tion for the marginal density, and find

�u��x� � ��xA�x���x� � 1
2

�x
2B�x���x�, (36)

where

A�x� �
ba0 � x2

b � x2 � x

�
2xb�a0 � 1����a0 � 2� � x�x2 � b�x � a0��

�b � x2�4 (37)

B�x� �
1

mo
�b�a0 � x� � x2�1 � x�

b � x2 �
�

bx2�a0 � 1�2

�b � x2�3 . (38)

The steady-state solution to Eq. 36 is given by Eq. 25, using
the above expressions for A and B.

Finally, in the deterministic limit , mo 3 �, we are left
with the ODE

dx

dt
�

ba0 � x2

b � x2 � x

� ��x��x�, (39)

where we have introduced the potential

��x� �
x2

2
� x � �a0 � 1��b arctan� x

�b� . (40)

Loosely speaking, �(x) can be thought of as an effective
free energy for the system. Its local minima represent stable
steady states of the concentration. The local maxima are
energetic barriers that must be surmounted by thermal ac-
tivation. In general, such a free energy function does not
exist for nonequilibrium systems, as is the case for the
mutual repressor system considered below.
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BIFURCATIONS

The deterministic system given by Eq. 39 acts as a switch in
the appropriate parameter regime: the system has two dis-
tinct stable fixed points (for a discussion of the necessary
conditions required to make a biological switch, see Cherry
and Adler, 2000). Figure 2 shows the bifurcation diagram
for this system as a function of the two parameters b and a0.
The corresponding potentials �(x) are also drawn on the
diagram to illustrate the number of stable fixed points in
each region. In the region where there are two stable fixed
points, the system acts as a genetic switch.

For stochastic systems, the notion of “stable fixed point”
in the state space is not well defined. To generalize the idea
of bifurcations for applicability to our stochastic models in
such a way as to be consistent with the usual meaning as the
fluctuations become vanishingly small, we focus our atten-
tion on the gain and loss of critical points in the probability
density function (Horsthemke and Lefever, 1984). So, for
example, a bifurcation in which a single stable fixed point
becomes a pair of stable fixed points and a single unstable
point corresponds to the transformation of a unimodal prob-
ability density function to one that is bimodal.

We now illustrate how fluctuations in the operator state
change the dynamics of the system. In particular, these
fluctuations can either induce bistability in regions that are
deterministically (i.e., in the zero-noise limit) monostable or
wash out regions of bistability. Figure 3 A is a bifurcation
diagram for the stationary distribution given by Eq. 35 as a
function of b and a0. For this figure  � 50. The dashed
curve corresponds to the deterministic bifurcation diagram
shown in Fig. 2. The various regions of this graph are

labeled with the numbers 1–6. In Fig. 3 B, qualitative fea-
tures of the steady-state distributions for each region of Fig.
3 A are shown. As the vertical line shown in Fig. 3 A is
crossed from left to right, an integrable singularity occurs at
the lower boundary of the distribution. Likewise, as the
horizontal line is crossed from top to bottom, an integrable
singularity occurs at the upper boundary of the distribution.
The points labeled 1 and 2 in Fig. 2 are monostable in the
deterministic limit. In Fig. 3 B, however, we see that finite
operator fluctuations induce a type of bistability. The sta-
tionary distribution has a local maximum at high concen-
trations and the distribution is singular at x � a0. Note that
there is small region near the cusp of the deterministic
bifurcation curve where the deterministic system predicts
bistability, but the fluctuations cause this behavior to be
lost. Not surprisingly, the Monte Carlo simulations pre-
sented below reveal that fluctuations in the monomer con-
centration can also wash out bistable behavior. In region 3,
the distribution is bimodal. This region grows and shifts as
 is increased until it coincides with the deterministic limit
(dashed curve). This effect can be seen in Fig. 3 C, which is
a bifurcation diagram for the steady-state distribution as a
function of b and  with a0 � 0.05. This value of a0 is used
in the Monte Carlo simulations discussed next.

Figure 4 shows the results of Monte Carlo simulations
consistent with Eq. 32. The parameter values in the upper pair
of panels correspond to the point labeled 1 in Fig. 2. In the
deterministic limit, the system is monostable. From Fig. 3 A,
however, we see that the finite operator fluctuations have
induced bistability. This can be seen from the dashed curve in
the top right panel of Fig. 4, representing the steady-state
distribution when monomer fluctuations are ignored. In the left
panel, a typical time series for the process is shown. There is no
indication of bistability. The solid curve shown in the top right
panel is the steady-state distribution when the small-and-fast
noise approximations are used (i.e., Eqs. 36 and 25). By
comparing the dashed and solid curves, we see that, even with
this large value of mo, monomer fluctuations can still be
detected. Indeed, these fluctuations are responsible for washing
out the bistable nature of the system. We find excellent agree-
ment between this distribution and the histogram from the
Monte Carlo simulations.

Comparison of the histograms reveals that bistability can
be induced by varying either � or K. Experimentally, �
could be altered, for example, by the addition of a protease.
Comparing the middle panels to Fig. 3 C, we expect that this
system will be bistable, and, indeed, the time series shown
in the middle left panel reveals that this is the case, although
low monomer levels are very unlikely. The lower state can
be further stabilized by increasing �. In the bottom panel, K
has been reduced while � is unchanged from the top panel.
The bistability of the system is evident. Note that, although
both approximations do a pretty good job of reproducing the
steady-state distributions, there is some discrepancy at low

FIGURE 2 The deterministic bifurcation diagram for the self-promoter.
The dimensionless parameters are defined as b � ���2/�1

2 and a0 � �0/�1.
The points 1, 3, and 4 indicate the parameter values used to produce the
potentials shown in the figure. Points 1 and 2 specify the systems inves-
tigated in the Monte Carlo simulations shown in Fig. 4, both of which are
monostable.
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concentrations. This is exactly where we expect the approx-
imations to break down.

Figure 5 is the same as Fig. 4 except that, instead of
performing Monte Carlo simulations of the discrete pro-
cess, we have generated sample paths based on the sto-
chastic differential equation associated with Eq. 36. This
method runs roughly an order of magnitude faster than

the discrete Monte Carlo simulations. As can be seen, the
agreement between the diffusion approximation and the
full simulation is good, and it looks as if the diffusion
approximation is faithfully capturing the dynamics as
well as the steady-state distribution. We expand on this
point in our discussion of the mean first passage time
below.

FIGURE 3 (A) The bifurcation diagram for Eq. 35 with  � 50. The regions numbered 1–6 correspond to qualitatively different steady-state distributions.
The dashed curve is the bifurcation diagram in the deterministic limit shown in Fig. 2. (B) The steady-state distributions associated with the regions
numbered in (A) and (C). (C) The bifurcation diagram for b versus  with a0 � 0.05.
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Finally, we illustrate the validity of ignoring the inher-
ent dimer concentration fluctuations. Figure 6 A shows
sample paths for M(t) and D(t) generated by Monte Carlo

simulation of the process described by Eq. 31. In the
deterministic limit, the system is bistable and this is
indeed evident in the time series. The intrinsic fluctua-

FIGURE 4 Sample paths and distributions for the self promoter. The dimer concentration has been eliminated using the quasiequilibrium approximation
(Eq. 32). In all the panels, � � 10,000, �1 � 1000 s�1, �0 � 50 s�1, and � � 10 (a0 � 0.05). Each histogram corresponds to the time series on its left.
Together, they illustrate the bifurcations that occur as � or K are varied. The bifurcation that occurs as K is varied is due solely to fluctuations in the operator
state and does not occur in the macroscopic limit. The distributions shown as solid lines are the results of the small-and-fast noise approximation. The
dashed curves are the steady-state distributions given by Eq. 35.

FIGURE 5 Sample paths of the stochastic differential equation associated with the small-and-fast noise approximation and corresponding steady-state
distributions. The solid curves are the same as in Fig. 4.
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tions, however, allow for transitions between the high
and low protein levels. Figure 6 B shows a comparison
between the corresponding histogram and the steady-
state distributions found using simultaneous application
of the small-and-fast noise and quasi-equilibrium approx-
imations. Note the excellent agreement between the nu-
merical and analytical results.

ESCAPE TIMES

When the system is stochastically bistable, a quantity of inter-
est is the time between switches from low to high concentra-
tion and vice versa. This time is a random variable and is often
referred to as the first-passage time. Here we present results for
the mean first-passage time (MFPT). In Appendix D, we
present the mathematical details needed to compute the MFPT.
For illustration, we consider cases in which the corresponding
deterministic system is bistable. We let the initial dimension-
less concentration X0 equal its lower bound, a0, and compute
the average time for the concentration to reach 0.65, which is
close to the high concentration steady state of Eq. 39. It is
assumed that, initially, the probabilities for the operator states
take their equilibrium values. Figure 7 is a plot of the MFPT
versus log  for various values of mo. The solid curves shown
in this figure are the MFPT as calculated from the discrete
process Eq. 32. The dot-dashed curve is the limiting case in
which mo3 �. In this limit, the MFPT goes to infinity as  is
increased, because there are no fluctuations to induce switch-
ing. This approximation is valid for situations in which the
operator fluctuations are slow and the total concentration is
large. In this limit, the first-passage time again becomes large
due to the long times spent in the unoccupied state. The dashed
curves are the approximations in which both operator and
concentration fluctuations are treated using the small noise
approximation. This approximation is poor when  is small.
Surprisingly, with sufficiently large , the approximation is
good when mo is even as small as 25. The fact that the
approximations accurately reproduce the MFPT indicates fur-

FIGURE 6 (A) Sample paths from Monte Carlo simulations that in-
clude independently both dimer and monomer number (i.e., the pro-
cesses described by Eq. 31) with � � 0.1 s�1, � � 6000, k0 � 12 s�1,
� � 11.7, �1 � 500 s�1, �0 � 40 s�1, and � � 1 (mo � 500,  � 500,
b � 0.28 and a0 � 0.08). In the macroscopic limit, the system is
bistable, as is evident in the time series. (B) The steady-state monomer
distribution. The histogram was generated from the time series shown
in (A). The solid curve is the steady-state distribution using the small-
and-fast noise approximation together with the quasiequilibrium ap-
proximation for the dimer number.

FIGURE 7 The MFPT as a function of log(). The solid lines are the
results for the discrete process Eq. 32 and the dashed lines are the
small-and-fast noise approximation. The dot-dashed line is the limit m0

goes to infinity. To produce this curve, the process described by Eq. 34 was
used. The parameters used to produce this figure were � � 1 s�1 and � �
6000. The parameters �1, �0, and b were adjusted to vary mo with b � 0.28
and a0 � 0.08 fixed. The system is deterministically bistable.
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ther that they are accurately depicting the dynamics and the
steady-state distribution of the system.

Figure 8 shows the time series and the steady-state dis-
tributions for the three vales of mo shown in Fig. 7 with  �
500. The time series represent Monte Carlo simulations of
the discrete process ignoring intrinsic dimer fluctuations.
When mo � 25, the bistable nature of the system is washed
out by the fluctuations in monomer concentration. Again,
we see that the small noise approximation accurately cap-
tures the steady-state distribution (solid curve). As mo is
increased, bistability becomes apparent, and, for very large
mo (data not shown), the small noise distribution becomes
indistinguishable from the distribution that ignores intrinsic
concentration fluctuations, but explicitly includes operator-
induced fluctuations (dashed curve).

We can also see the emergence of bistability if we plot
the MFPT verses the initial concentration X0 (Fig. 9). The
emergence of a step in MFPT at large values of mo indicates
a potential barrier at around X0 � 0.3 that fluctuations must
surmount.

REGULATED SYSTEMS II:
MUTUAL REPRESSORS

Another type of switch is formed when two proteins, �1

and �2, act as mutual repressors; each binds to the operator

of the other and represses its transcription. Recently, such a
regulatory network has been engineered and shown to act as

FIGURE 8 Time series and steady-state distributions for the various cases illustrated in Fig. 7 with  � 500. The time series and histograms show the
results of Monte Carlo simulation of the discrete process described by Eq. 32. The solid lines are the steady-state distribution obtained using the
small-and-fast noise approximation. The dashed lines show the steady-state distribution in the limit mo 3 � (Eq. 34). The transition to bistability for
increasing mo is evident.

FIGURE 9 The MFPT as a function of the initial concentration X0. The
parameters used to produce this plot are the same as in Fig. 8. As before,
the solid lines show the results for the discrete process and the dashed lines
represent the small-and-fast noise approximation. With this value of , the
approximation is a good even when mo � 25.
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a toggle switch (Gardner et al., 2000). To illustrate the
mathematical techniques and highlight the main features of
this system, we make several simplifying assumptions.
Even for this oversimplified system, the effective diffusion
equation for the system is quite complicated and the dy-
namics, nontrivial.

Our first simplifying assumption is that the two genes
that code for �1 and �2 share the same operator. Al-
though our motivation is simplification, similar arrange-
ments do occur in nature (Ptashne, 1992). This assump-
tion reduces the number of operator states from 4 to 3:
s � 0 (empty), s � 1 (occupied by �1), and s � 2
(occupied by �2). Again we assume that the proteins
bind to the operator as dimers, �1 and �2. For simplicity,
we assume that the proteins differ only in the gene they
repress—all other biophysical parameters are identical.
Furthermore, we consider only the limiting case in which
the dimerization reaction is fast as compared to all other
processes. As before, we assume that the dimeric form of
the protein is stable and the dissociation constant � is
large.

We assume that, if �1 is bound to the operator, then the
production rate of �2 is �0,2 � 0, and vice versa. If there is
no repressor bound both proteins are produced at rate �1,i �
�1, where i � 1 or 2. All these considerations lead to the
following set of biochemical reactions

�i ¡
�

A, (41)

AO¡
�s

i

�i, (42)

�i � �iL|;
�

��
�i, (43)

�0 � �iL|;
K

�K
�i. (44)

It is straightforward to write down the master equation for
the reaction scheme given above and use the quasi-equilib-
rium approximation to eliminate the dimer numbers. The
resulting master equation for the monomer abundances is
not enlightening and will not be presented here.

As is shown in Appendix C, the diffusion equation in the
small noise limit has the form

�u��x1, x2, s� � ��x1A1�x1, x2�� � �x2A2�x1, x2��

� 1
2

�x1

2 B1�x1, x2� � 1
2

�x2

2 B2�x1, x2�

� �x1�x2B12�x1, x2��. (45)

The explicit forms of A and B are given in Appendix C. The
occurrence of a cross term with a negative coefficient in the
above equation indicates that the fluctuations in the two

concentrations are anticorrelated, as expected, given the
inhibitory interactions between the two protein species. In
the deterministic limit, the ODEs for the dimensionless
concentrations are

dx1

dt
�

1

1 � x2
2/�b � x1

2�
� x1, (46)

dx2

dt
�

1

1 � x1
2/�b � x2

2�
� x2, (47)

where, again, b � ���2/�1
2.

Results for the mutual repressor

The bifurcation diagram for Eqs. 46 and 47 (Fig. 10) shows
that, when b � 4⁄9, there are two stable fixed points. In the
absence of a simple form for the steady-state distribution,
we examine the effectiveness of the approximations by
direct comparison of realizations of the discrete process to
the continuous diffusion approximation (i.e., realizations
from the stochastic differential equations corresponding to
Eq. 45).

Figure 11 shows time series and histograms for Monte
Carlo simulations of the discrete process. The top three
panels correspond to the point marked 1 in Fig. 10. In the
deterministic limit, the system is monostable. The values of
mo and  are 1000 and 50, respectively; we expect the small
noise approximation to be valid. In the middle three panels,
� has been reduced. They correspond to the point marked 2
in Fig. 10; we expect the system to be bistable. This behav-
ior is clearly seen in the time series and histogram. Finally,
in the bottom three panels, the same parameter values are

FIGURE 10 The bifurcation diagram for the mutual repressor. The solid
curves indicate the stable fixed points of the system. The system undergoes
a bifurcation at b � 4⁄9. The point marked 1 indicates the value of b used
in the top and bottom panels of Figs. 11 and 12, and the point marked 2
indicates the value of b used in the middle panel of these figures.
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used as in the top panels except that K has been reduced
one-hundred-fold. The deterministic description predicts
that the system is monostable. However, as can be seen
from the figure with finite fluctuations, the system is bist-
able. Due to the small value of  and b used in the bottom
panel, we may not be justified in using the diffusion ap-
proximation for this case.

Figure 12 illustrates results obtained using the small-and-
fast noise approximations. That is, the time series shown in the
figure were generated using the stochastic differential equa-
tions associated with Eq. 45. Very good agreement is seen
between the top and middle panels of this figure and Fig. 11,
verifying the validity of these approximations. Some discrep-
ancies are noticeable, however, in the bottom panels of the two
figures where b is only 5. To accurately capture the dynamics
of the system with this value of , the fluctuations in the
operator state must be explicitly included in the model. That is,
Eqs. C1–C3 should be used. When this is done, there is good
are agreement for all three cases (data not shown).

DISCUSSION

Genetic regulation is a topic of central importance in biol-
ogy. With the advent of new techniques for the simulta-

neous determination of expression levels of tens of thou-
sands of genes, many of its key issues are likely to be dealt
with comprehensively in the next several years. Given the
extraordinary quantities of data that will be necessary to
accomplish these goals and the inherent complexity of the
systems involved, it is inevitable that these gains will re-
quire significant use of novel mathematical and statistical
tools. Furthermore, the nature of transcription—small tran-
script numbers and discrete operator states—dictates that
stochasticity be explicitly treated and understood in the
basic models. This contention is buttressed by the existence
of several macroscopic gene-regulatory phenomena in
which stochastic effects play a major role (Weintraub, 1988;
van Roon et al., 1989; Fiering et al., 1990; Dingemanse et
al., 1994; Walters et al., 1995; Wijgerde et al., 1995; Ahmad
and Henikoff, 2001).

We are particularly interested in examining the gene-
product concentration variability due to internal fluctuations
in the discrete states of the operator, because, to our knowl-
edge, a theoretical treatment of these fluctuations does not
exist. However, computer simulations of simple models of
inducible gene expression have been studied (Ko, 1991;
Cook et al., 1998). We are not aware of any estimates of
reaction rates for operator fluctuations and therefore cannot

FIGURE 11 Monte Carlo simulations for the mutual repressor with � � 10,000, � � 50, �1 � 1000 s�1. In the top three panels, k0 � 0.5 s�1, � � 1
s�1, and b � 0.5. The dimensionless parameters are: (upper) b � 0.5 and  � 50, (middle) b � 0.28 and  � 118.5, and (lower) b � 0.5 and  � 10.
Note that, in the lower panels,  and b are not large, so we expect fluctuations in the operator state to have a significant effect. The dimer concentration
has been approximated using the quasi-steady-state approximation.
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say in advance just how large the associated effects will be.
We have derived expressions for the gene-product variance
attributable to these operator fluctuations that could help to
estimate these effective rates, or conversely, given these
effective rates, estimate the size of the associated variance.

Even the more complicated of the models discussed here
leave out potentially important features. The most egregious
such omission is that of the distinction between transcrip-
tion and translation. In other words, the models, read liter-
ally, are models of direct translation from DNA into protein.
This simplification clearly has significant impact on phe-
nomena in some systems. The artificial three-gene cycling
construct (Elowitz and Leibler, 2000), for example, would
not oscillate at all were it not for the delay between tran-
scription and translation.

Other researchers have developed models that treat tran-
scription and translation separately. In a model of the tryp-
tophan operon, Santillan and Mackey (2001a,b) used delay
differential equations to take into account time delays asso-
ciated with these two processes, whereas others have con-
structed stochastic models of transcription and translation
that explicitly account for delays in these processes (Mc-
Adams and Arkin, 1997; Thattai and van Oudenaarden,

2001). In all these investigations, operator fluctuations were
ignored. One aim of this manuscript is to understand the role
of these fluctuations in transcriptional regulation. This is the
motivation for simplifying transcription and translation into
a single kinetic step. A serious concern with this assumption
is that our model allows a finite probability for the instan-
taneous production of protein. We do not expect including
explicit models of transcription and translation to affect the
qualitative features of our results. However, to fully under-
stand the combined effects of all the relevant processes
requires further investigation.

We have attempted here to strike a balance between those
models that are based on discrete-object simulation (Endy and
Brent, 2001; McAdams and Arkin 1998) and those that are
derived directly in terms of macroscopic state variables and
either neglect randomness or add it by hand (Shea and
Ackers, 1985; Hasty et al., 2001a,b; Hasty 2000; Santillan
and Mackey, 2001a,b). Both these approaches are useful and
have provided insight into genetic networks. However, the
former can be very difficult to analyze, or even understand
adequately, and becomes computationally intractable for large
networks, whereas the latter may fail to represent the phenom-
ena quantitatively, or indeed, as we show here, qualitatively.

FIGURE 12 Sample paths of the stochastic differential equations associated with the small-and-fast noise approximation of the mutual repressor. Good
agreement between this figure and Fig. 11 is evident in the upper and middle panels, through differences are clearly visible in the lower panels. These
disparities arise because the fluctuations in the operator state are not fast enough to warrant the fast noise approximation.
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We have presented a set of stochastic models of differing
levels of temporal and, effectively, spatial resolution, de-
rived in various parameter limits. We have used these mod-
els to explore some of the basic consequences of stochas-
ticity in transcriptional regulation in two simple models
exhibiting stable switching behavior in the deterministic
limit. Because our approach starts from a microscopic de-
scription, all the macroscopic parameters are defined in
terms of the underlying chemical processes. Even for situ-
ations in which intrinsic fluctuations are negligible, it is
important to derive the macroscopic rate equations directly
from the underlying master equation, because phenomeno-
logical treatments do not reliable capture the dynamics of
the system (cf. Eq. A12).

In the presence of noise, the switches are destabilized,
and, correspondingly, the bifurcation diagrams that provide
insight into the nature of the switches must be generalized.
We have used the appearance of critical points in the steady-
state probability density function (rather than of singular
points of the deterministic dynamics) to characterize the
qualitative behavior of these systems, which have rich bi-
furcation structures, including bifurcations associated with
changes in the operator fluctuation rates alone. In other
words, the qualitative behavior of these switches changes
when the characteristic time for operator fluctuations is
assumed zero, the limit in which the deterministic rate
equations are derived.

The stochasticity of these switches causes spontaneous
transitions to occur. In the context of our models, we can
compute the mean first-passage times. We find that these
mean waiting times increase exponentially with the operator
fluctuation characteristic rate. Thus, we might expect to find
that evolution has tuned these rates to just over the value
necessary to prevent spontaneous transitions within the life-
time of the cell, except in the case where spontaneous
transitions are an intrinsic component of the functional
behavior of the system.

Beyond the results reported here, our primary concern is
that the effects of intrinsic noise may actually become
increasingly important as more and more components are
assembled into the large regulatory networks that clearly
comprise the basic apparatus of the cell. Thus far, we have
only examined the case of very small networks, and do not
now have any sense for how the effects in question scale
with network size.

There surely are sources of variability we have not yet
considered (fluctuations in cell volume, ionic environ-
ment, DNA accessibility, etc.) that may have profound
consequences for genetic regulation. There are several
DNA chemical modifications, such as methylation
(Yeivin and Razin, 1993) and acetylation (Grunstein,
1997) unique to multicellular eukaryotes that result in
longer term, more stable regulatory changes. Even here,
we expect that the initiation of these changes has great
variability from cell to cell. We are anxious to learn,

among other things, the role of stochasticity coupled to
more macroscopic intercellular processes in driving the
extraordinary development of a complete organism from
a single cell.

APPENDIX A: QUASI-EQUILIBRIUM
DIMER FLUCTUATIONS

In this appendix, we show how the quasi-equilibrium assumption can be
used to eliminate the dimer number as a state variable from the problem.
This procedure depends on two characteristics of the system: First, that the
coefficient of variation of the dimer number conditional on the total protein
concentration is small; Second, that the rate constants for the dimerization
reactions are fast compared to other rates in the system.

We write the joint probability function as the product of the marginal in
n and the conditional of d on n.

pn,d
s � pn

spd�n
s . (A1)

Summing Eq. 31 over d gives the differential equation for pn
s,

dpn
s

dt
� ���n � 1 � 2	d�n � 1
s�pn�1

s � �n � 2	d�n
s�pn
s�

� �s�pn�1
s � pn

s� � ��1�sK��pn
1 � 	d�n
spn

0�.

(A2)

Substitution of Eq. A1 into Eq. 31 yields that for pd�n
s . This latter equation

is somewhat complicated and not particularly transparent. The dominant
term in this equation, however, is the dimer-related probability flux, or
“dimer flux,” which, for both operator states, s is given by

jn,d
s �t� � ���n � 2d � 2��n � 2d � 1�pd�1�n

s � �dpd�n
s �pn

s .

(A3)

As � tends toward infinity, this flux must remain finite for all d: quasi-
equilibrium corresponds to setting the expression inside the square brackets
to zero. Equations for the conditional moments can then be found by
multiplying this expression by dq and summing over d. The result for q �
1 is

�	d�n
 � �n � 2	d�n
��n � 2	d�n
 � 1� � 4Var�d�n�.

(A4)

When the coefficient of variation of d conditional on n is small (we will
determine shortly when it will be small), the variance term can be ne-
glected, and the mean is given simply by

	d�n
 �
1

�
m�n��m�n� � 1�, (A5)

where m(n) � n � 2	d�n
. Under the quasi-steady-state approximation, Eq.
A2 becomes

dpn
s

dt
� ��n � 1 � 2	d�n � 1
�pn�1

s � �n � 2	d�n
�pn
s�

� �s�pn�1
s � pn

s� � ��1�sK��pn
1 � 	d�n
pn

0�,

(A6)
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where 	d�n
 is given by Eq. A4. For the above equation to be useful,
however, we need the functional dependence of 	d�n
 on n. This relation
can be found easily if the coefficient of variation is small, in which case Eq.
A5 can be used to solve for 	d�n
 in terms of n. If, additionally, the
dissociation constant is large, then M � N. Making this change of variable
in Eq. A6 produces Eq. 32 of the text.

We can approximate the coefficient of variation under the assumption that
the third central moment is small compared to the mean cubed, and find

CV �d�n� �
1

	d�n


1

1 � 4	d�n

(A7)

giving a condition for the self-consistency of the approximation. If the
dimer number is large enough to warrant the diffusion approximation, then
an analytic expression for the equilibrium dimer probability density for

fixed N can be found and used to examine this assumption explicitly. The
equilibrium probability density is given by

log �D�n�d�n� � � � 2d � ��� � 4n��8�n � �2��1/2

� arctan�8d � � � 4n

�8�n � �2 �
� �1 �

�

2�log�42m0
2 � d�� � 4n� � n2�,

(A8)

where � is a normalization constant. Figure A1, A and B, show plots of this
distribution with � � 150. In Fig. A1, A, N � 20. With this value, the
average number of dimers is between 1 and 2. Surprisingly, the continuum
limit works relatively well even for this small number of dimers. In Fig.
A1, B, N � 120. For this case, the mean and the variance are 27.5 and 10.0,
respectively. Note that, even with this small number of dimers, the distri-
bution looks nearly Gaussian and the coefficient of variation (�0.01) is
small.

For a large gene-product pool, we can use the diffusion approximation
to Eq. A6. To do this, we convert to the dimensionless variables u � �t and
Y � N/mo. Then the marginal density for X � M/mo is found by using the
change of variables Y � X � 2X2/�. The result is

�u�s � ��x����as � x�

� � 4xmo
�

2�2�as � x�

�� � 4xmo�
3��s

�
1

2m0
�x

�2�as � x�

�� � 4xmo�
2 �s�

� ��1�s�b�1 � x2�0�. (A9)

In the limit m0 3 �, the above equation becomes

�u�s � ��x

��as � x�

� � 4xmo
�s � ��1�s�b�1 � x2�0�. (A10)

The steady-state marginal density �� � ��0 � ��1 for the above equation is

log �� �x� � � � �x2

2
� a0x�

�
2

3

mox

�
�6b � 6a0

2 � 3a0x � 2x2�

� log�1 �
4mox

� �
� �b � 1 �

4mob

� �log�1 � x�

� �a0
2 � 1 �

4a0
3mo

� �log�x � a0�, (A11)

which reduces to Eq. 35 in the limit � �� m0. Next, taking the limit  3

FIGURE A1 The equilibrium dimer distribution with � � 150: (A) N �
20 and (B) N � 120. The histograms are the results of Monte Carlo
simulations and the solid lines are the diffusion approximation, which
treats the number of dimers as a continuous variable.
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� in Eq. A10 results in the Liouville equation, equivalent to the ODE,

dx

dt
�

1

1 � 4mox/� �ba0 � x2

b � x2 � x� , (A12)

which reduces to Eq. 39 in the limit � �� mo. Note that the prefactor
multiplying the right-hand side of Eq. A12 does not affect the fixed points
of the system. It does, however, play a significant role in the dynamics.

APPENDIX B: EFFECTIVE DIFFUSION EQUATION
FROM OPERATOR FLUCTUATIONS:
GENERAL CASE

We often expect that the fluctuations in the operator state occur on a faster
time scale than the rate of production and degradation of protein. In this
limit, it is possible to derive an effective diffusion equation for the marginal
probability density. We start from the small noise approximation for the
protein concentrations and make use of the dimensionless variables dis-
cussed in the text. Let the elements of the q-dimensional vector X(t) denote
the dimensionless concentrations of the q protein species involved in the
process at time t. The single time density for the operator state and protein
concentrations is denote by �i(x, t). Therefore, � is a c-dimensional vector,
where c is the number of chemical states of the operator. The single-time
densities satisfy the equation

�t� � L�x�� � K�, (B1)

where K is the c � c transition matrix that contains the reaction rates for
transitions between chemical states of the operator. The diagonal matrix
operator L has the form

Lii � ��
j�1

q

�xjgji�x� �
1

2 �
j�1

q

�xj

2 hji�x�. (B2)

The matrix g is a q � c matrix, whose jth column contains the net
production rates of the q protein species when the operator is in the jth
chemical state. The matrix h is likewise a q � c matrix. The columns of h
are the diffusion coefficients for each protein species in that particular
chemical state of the operator. To make explicit our assumption that the
chemical kinetics of the operator are fast, we scale K as K/� and write

�t� � L�x�� �
1

�
K�. (B3)

Now, because probability is conserved, the matrix K(x) must have one
zero eigenvalue for all values of x. We assume that K has exactly one zero
eigenvalue (all the rest must be negative) at each point. Furthermore, the
left eigenvector corresponding to the eigenvalue zero is the row vector
1T � (1, 1, . . . , 1); i.e.,

1TK � 0. (B4)

We designate the corresponding right eigenvector r0(x) and normalize it to
satisfy 1Tr0 � 1. Thus, the elements of r0 are the steady-state probabilities
of the chemical states of the operator for fixed x. The projection operator,

� � I � r01T, (B5)

projects out the dynamics of the system that does not lie in the null space
of K. The marginal density for X is f � 1T�. The joint density � can be
decomposed as

� � � � fr0, (B6)

where � � ��. In terms of this decomposition, Eq. B3 becomes

�tf � 1TL�� � fr0�, (B7)

�t� � �L�� � fr0� �
1

�
K�, (B8)

where the last term in the second equation takes account of the fact that
�K � K.

We next make the quasi-equilibrium approximation. That is, we
assume that the probabilities for the chemical states of the operator
reach their steady-state values, before X changes appreciably. This
amounts to setting the left-hand side of Eq. B8 equal to zero. Remem-
bering that, by construction, � does not have a component that lies in the
null space of K, we have

� � ��K�Lfr0 � O��2�, (B9)

where K� is a pseudo-inverse of K defined by

K�K � KK� � � and K�� � K�. (B10)

An explicit formula for K� is

K� � E�*E�1, (B11)

where E is the matrix whose columns are the right eigenvectors of K, and
�* is the diagonal matrix whose entries on the diagonal are the inverses of
the eigenvalues of K, except that the entry corresponding to the null
eigenvalue is itself zero. One can see that the matrix thus defined satisfies
Eq. B10. We then substitute Eq. B9 into Eq. B7 to give the diffusion
equation for the marginal density,

�t f � 1TLfr0 � �1TLK�Lfr0. (B12)

EXAMPLE Two chemical states (self-promoter). As an example of the
algorithm described above, we treat the case of one protein species and two
operator states, a special case of which is the self-promoter discussed in the
text.

Let k0 � �K11 � K21 and k1 � �K22 � K12. In this case, the matrices
g and h are 1 � 2. Let g11 � g0 and g12 � g1. Likewise, let h11 � h0 and
h12 � h1. Then we have

r0 �
1

k0 � k1
�k1

k0
� , (B13)

K� �
1

�k0 � k1�
2 � �k0 k1

k0 �k1
� , (B14)

gr0 �
g0k1 � g1k0

k0 � k1
, (B15)

hr0 �
h0k1 � h1k0

k0 � k1
. (B16)

So Eq. B1 becomes

�t f�x, t� � ��x�A�x�f�x, t�� � 1
2

�x
2�B�x�f�x, t��, (B17)
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where

A�x� �
k1g0 � k0g1

k0 � k1

� �
1

�k0 � k1�
�k0g0�x�k0

g0 � g1

�k0 � k1�
2�

� k0g1�x�k1

g0 � g1

�k0 � k1�
2�� (B18)

and

B � 2�
k0k1�g0 � g1�

2

�k0 � k1�
3 �

h0k1 � h1k0

k0 � k1
. (B19)

Note that, when � 3 0 and when within-operator state fluctuations are
negligible, we recover the deterministic ODE for the system,

dx

dt
�

k1g0 � k0g1

k0 � k1
. (B20)

The correspondence with the self-promoter system discussed in the text
is established with g0(x) � 1 � x, g1(x) � a0 � x, h0 � 1 � x, h1 � a0 �
x, K10(x) � b, K01(x) � x2, and � � 1/, leading to the expressions for A(x)
and B(x) given by Eqs. 37 and 38.

APPENDIX C: MUTUAL REPRESSORS

Converting to dimensionless variables, the diffusion limit for fluctuations
in the monomer concentration is

�u�1�x1, x2� � ��x1�1 � x1��1 � �x2x2�1

�
1

2mo
��x1

2 �1 � x1� � �x2

2 x2��1

� �b�1 � x1
2�0�, (C1)

�u�2�x1, x2� � ��x2�1 � x2��2 � �x1x1�2

�
1

2mo
��x1

2 x1 � �x2

2 �1 � x2���2

� �b�2 � x1
2�0�, (C2)

�u�0�x1, x2� � ��x2�1 � x2��0 � �x1�1 � x1��0

�
1

2mO
��x1

2 �1 � x1� � �x2

2 �1 � x2���0

� ��x1
2 � x2

2��0 � b�1 � b�2�, (C3)

where X1 � M1/mo and X2 � M2/mo.
In the limit of fast operator fluctuations, the diffusion approximation for

the marginal density � � �0 � �1 � �2 has the form

�s��x1, x2, s� � ��x1A1�x1, x2�� � �x2A2�x1, x2��

� 1
2
��x1

2 B1�x1, x2� � �x2

2 B2�x1, x2��

� �x1�x2B12�x1, x2��, (C4)

where

A1�x1, x2� �
1

1 � x2
2/�b � x1

2�
� x1

�
1


�2x1x2�x1 � x2��

� � �x1 � 1��b � x1
2��2b � x1

2�
� x1x2

2�3b � x1�2x1 � 1�� � x1x2
4

b�b � x1
2 � x2

2�4
� ,

A2�x1, x2� �
1

1 � x1
2/�b � x2

2�
� x2 �

1


�2x1x2�x1 � x2��

� ��x2 � 1��b � x2
2��2b � x2

2�
� x2x1

2�3b � x2�2x2 � 1�� � x2x1
4

b�b � x2
2 � x1

2�4
� ,

B1�x1, x2� �
1

mo
� 1

1 � x2
2/�b � x1

2�
� x1�

�
1

 �x2
2�b2 � 2bx1

2 � x1
2x2

2 � x1
4�

b�b � x1
2 � x2

2�3 � ,

B2�x1, x2� �
1

mo
� 1

1 � x1
2/�b � x2

2�
� x2�

�
1

 �x1
2�b2 � 2bx2

2 � x1
2x2

2 � x2
4�

b�b � x1
2 � x2

2�3 � ,

B12�x1, x2� �
1

 �x1
2x2

2�2b � x1
2 � x2

2�

b�b � x1
2 � x2

2�3 � .

APPENDIX D: THE MEAN FIRST PASSAGE TIME

Here we derive equations that govern the mean time to switch from one
quasi-stable state to another. For simplicity, we will only consider the case
in which there is one protein species. For more complicated systems, one
is, in general, forced to use numerical techniques to compute the mean
first-passage time.

Continuous and discrete processes

We begin by considering the general situation in which the stochastic
process has both a continuous and discrete component. This corresponds to
a case in which the monomer concentration is considered to be continuous,
but the states of the operator are discrete. Below, we specialize the
treatment to consider purely discrete or continuous systems.

The starting point for these considerations is the backward equation
(corresponding to the forward equation Eq. B1) for the conditional or
“transition” densities �ij(y, t�x, 0) (Gardiner, 1990)

�

�t
� � �L†�x���T � �K�x�, (D1)
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where

Lii
† � �

j�1

n

gji�x��xj �
1

2 �
j�1

n

hji�x��xj

2 . (D2)

If we consider the closed interval [a, b] with an absorbing barrier at one or
both ends, the mean first-passage time, Ti(x) for the concentration to leave
this interval, given that it started at x with the operator in state i at t � 0,
is

Ti�x� � �
0

��
a

b�
j

m

�ji�y�x�dydt � �
j

m

�ji�x�. (D3)

Using Eq. D1, it is straightforward to show that the � satisfy the equation

�I � �L†�x���T � �K�x�. (D4)

Let T denote the vector whose elements consist of Ti(x). Summing the
above matrix equation over the rows produces the vector equation for T,

�1 � �L†T�T � TK, (D5)

where 1 is an m-dimensional row vector of ones. The above equation
represents a set of m nonhomogeneous-coupled second-order ODEs. The
boundary conditions are Ti � 0 at an absorbing boundary and �Ti/�x � 0
at a reflecting boundary condition. The mean first-passage time for the
process is found from

	T�x�
 � �
i�1

n

piTi�x�, (D6)

where pi denotes the probability of being in state i at t � 0.
Even for the simple two-state system discussed above, analytic solu-

tions to Eq. D5 are unavailable. If we ignore fluctuations in the concen-
tration, the equations for the two-state system become

�1 � g0�x�
dT0

dx
� k0�x��T0 � T1�, (D7)

�1 � g1�x�
dT1

dx
� k1�x��T1 � T0�. (D8)

Notice that the order of the equations has been reduced from second to first.
Therefore, we only need two boundary conditions. If the deterministic flow
is toward an absorbing barrier, then Ti for that state must vanish at the
boundary. If the flow is toward a reflecting boundary or stable fixed point,
then dTi/dx vanishes at that point. There are no boundary conditions at the
points where the flow is away from absorbing or reflecting boundary or
unstable fixed point.

To solve Eqs. D7 and D8, we use the change of variables � � T0 � T1.
This produces

d�

dx0
�

g1k0 � g0k1

g0g1
� �

g1 � g0

g0g1
, (D9)

whose solution can be written explicitly. The remaining differential equa-
tion is

dT1

dx0
� �

1

g1�x0�
�

k1�x0�

g1�x0�
�, (D10)

which, again, has solution given by quadrature involving the solution for �.

Discrete processes

Here we consider the case in which the monomer number is treated as a
discrete random variable. We restrict ourselves to the self-promoting
system discussed in the text. Let pb�a(j, t�m, 0) denote the transition density
for the operator to be in state b with j monomers present at time t given that,
at time 0, the operator was in state a with m monomers present. If there are
l possibilities for the number of monomers, the transition densities can be
arranged in a 2l � 2l matrix P, where the 2 comes from the fact that the
operator has 2 states. The backward equation then has the form

dP
dt

� PW, (D11)

where W is the transition matrix for the entire process. The elements of W
come from the underlying master equation for the process, e.g., Eq. 32.

Let Tm
a be the MFPT for a system starting in state (a, m) with an

absorbing barrier placed at N � m and a reflecting barrier at n � m. Using
Eqs. D11 and 32 and following the same reasoning as described above for
the mixed case, we have

�1 � �0�Tm�1
0 � Tm

0 �

� �m�Tm�1
0 � Tm

0 �

�
k0

�
m�m � 1��Tm

1 � Tm
0 �, (D12)

�1 � �1�Tm�1
1 � Tm

1 �

� ��m � 1��Tm�1
1 � Tm

1 �

� k0��Tm
0 � Tm

1 �. (D13)

The boundary conditions are as follows. At the absorbing boundary we
have TN

a � 0. At the reflecting boundary we have

0 � �0�T n�1
0 � T n

0� �
k0

�
m�m � 1��Tn

1 � Tn
0�, (D14)

0 � �1�Tn�1
1 � Tn

1� � k0��Tn
0 � Tn

1�. (D15)

Eqs. D2–D15 must be solved numerically.

Continuous processes

For completeness, we note that an expression for the mean first-passage
time can be constructed in the full diffusion limit (Gardiner, 1990). In this
case, the mean first-passage time T(x) satisfies the equation,

�1 � A�x�
dT�x�

dx
�

B�x�

2

d2T

dx2 . (D16)

The mean first-passage time for the concentration to leave the interval [0,
a] with a reflecting boundary at x � 0 and an absorbing boundary at x �
a is

T�x� � 2�
x

a

��1�x��dx��
0

x���y�

B�y�
dy, (D17)
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where

��x� � exp�2�
0

xA�y�

B�y�
dy� . (D18)

Because of the multiple integrals involved in the above expression, in
general, it is not particularly useful. In fact, the results for this case
presented in the manuscript were obtained by numerically solving Eq. D16
using a shooting method.
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