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We study properties of popular, near–uniform, priors for
learning undersampled probability distributions on discrete
nonmetric spaces and show that they lead to disastrous
results. However, an Occam–style phase space argument
allows us to salvage the priors and turn the problems into
a surprisingly good estimator of entropies of discrete dis-
tributions.



Undersampled learning of probabilities on

continuous spaces (weather, stocks,. . .):
Possible outcomes x, a ≤ x ≤ b
Probability density Q(x)
Observed data xµ, µ = 1 . . . N
Undersampled regime always

Smoothness ∂ηQ/∂xη is small

Regularization of learning local: punish for ∂ηQ/∂xη � 1
Model selection phase space volume, self-consistent

Prior-insensitive learning probably possible

discrete nonmetric spaces (languages, bioinformatics,. . .):
Discrete outcomes (bins) i, i = 1 . . .K
Probability mass qi
Observed bin occupancy ni
Undersampled regime

∑K
i=1 ni ≡ N � K

Smoothness undefined

Regularization of learning ultralocal: P({qi}) =
∏
Pi(qi)

global: P({qi}) = F (entropy)
Model selection unknown

Prior-insensitive learning probably impossible for N � K

Our options (for discrete case):

1. Define smoothness as high entropy or low mutual information
distributions.

2. Prior-insensitive learning of useful functions (like entropy) may
be possible for N � K even if it’s impossible for {qi}.
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We choose:
Learning entropy with nearly uniform priors

Family of priors: (Dirichlet priors)

Pβ({qi}) =
1

Z(β)
δ

1−
K∑
i=1

qi

 K∏
i=1

q
β−1
i

Generation of distributions from this family:

Successively select each qi according to

P (qi) = B

(
qi

1−
∑
j<i qj

;β, (K − i)β

)

B (x; a, b) =
xa−1(1− x)b−1

B(a, b)

Typical distributions (K = 1000):
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Bayesian inference:

Pβ({qi}|{ni}) =
P ({ni}|{qi})Pβ({qi})

Pβ({ni})

P ({ni}|{qi}) =
K∏
i=1

(qi)
ni

〈qi〉β =
ni + β

N +Kβ

Some common choices:

Maximum likelihood β → 0
Laplace’s successor rule β = 1
Krichevsky–Trofimov estimator β = 1/2
Schurmann–Grassberger estimator β = 1/K

A priori expectations about the entropy:

Pβ(S) =

∫
dq1dq2 · · · dqK Pβ({qi}) δ

[
S +

K∑
i=1

qi log2 qi

]
The first few moments of Pβ(S) are

ξ(β) ≡ 〈S[ni = 0] 〉β
= ψ0(Kβ + 1)− ψ0(β + 1) ,

σ2(β) ≡ 〈 (δS)2[ni = 0]〉β

=
β + 1

Kβ + 1
ψ1(β + 1)− ψ1(Kβ + 1)

ψm(x) = (d/dx)m+1 log2 Γ(x) –the polygamma function
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Problem: entropy is known a priori for K � 1
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Properties:

1. Because of the phase space factors (Jacobian) of the {qi} → S
transformation, a priori distribution of entropy is strongly peaked.

2. The peak is narrow: maxσ(β) = 0.61bits � log2K at β ≈
1/K; σ(β) ∝ 1/

√
Kβ for Kβ � 1; σ(β) ∝

√
Kβ for Kβ � 1.

3. As β varies from 0 to ∞, the peak smoothly moves from ξ(β) =
0 to log2K. For any finite β, ξ(β) = log2K −O(K0).

Problems:

1. No a priori way to specify β.

1. Choosing β fixes allowed “shapes” of {qi}, (cf. Panel 2) and thus
defines the a priori expectation of entropy.

2. Since, for large Kβ, σ(β) ∼ 1/
√
Kβ it takes N ∼ K data to

influence entropy estimation.

3. All common estimators (cf. Panel 3) are, therefore, bad for learn-
ing entropies.
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Elaboration: problems of common estimators

Maximum likelihood: P0(S) = δ(S)

1. Even P0(S)|N=1 = δ(S).

2. In general, SML always has a downwards bias.

3. S = SML + K∗

2N
+ O

(
1
N2

)
, K∗ = K − 1, is an asymptotically

valid correction. However, non-asymptotic choices of K∗ are ad
hoc and cannot estimate variance.

Laplace and KT: σ(β = 1, 1/2) ∼ 1/
√
K
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Schurmann–Grassberger: σ(1/K) ≈ 0.61 bit.

1. Maximizes a priori entropy variance.

2. The least biased of the Dirichlet family.

3. Still strongly biased towards S = 1/ ln 2 bits.
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Removal of the a priori bias

We need: such P({qi}) that P(S[qi]) is (almost) uniform.

Our options:

1. Pflat
β ({qi}) =

Pβ({qi})
Pβ(S[qi])

– difficult.

2. P(S) ∼ 1 =
∫
δ(S − ξ)dξ. Easy: Pβ(S) is almost a

δ-function!

Solution: Average over β — infinite Dirichlet mixtures

P({qi};β) =
1

Z
δ

1−
K∑
i=1

qi

 K∏
i=1

q
β−1
i

dξ(β)

dβ
P(ξ(β))

Ŝm =

∫
dξ ρ(ξ, {ni})〈Sm[ni] 〉β(ξ)∫

dξ ρ(ξ, [ni])

ρ(ξ, [ni]) = P (ξ)
Γ(Kβ(ξ))

Γ(N +Kβ(ξ))

K∏
i=1

Γ(ni + β(ξ))

Γ(β(ξ))
.

Notes:

1. dξ/dβ insures a priori uniformity over expected entropy.

2. P(ξ) embodies actual expectations about entropy.

3. Smaller β means larger allowed volume in the space of {qi}.
Thus averaging over β is Bayesian model selection (cf. Panel 1).

4. If ρ(ξ) is peaked, then some β(ξ) (model) dominates (is “se-
lected”), and the variance of the estimator is small.
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Results: unbiased estimation of entropy
Typical distributions (cf. Panel 2) Atypical distributions

−0.2

   0

    

    

 0.6
β = 0.0007
S = 1.05 bits

( 
S

 −
 S

 )
 / 

S
^

−0.2

   0

    

    

 0.6
β = 0.02
S = 5.16 bits

( 
S

 −
 S

 )
 / 

S
^

  10   30  100  300  1000  3000 10000
−0.3

    

    

   0

 0.1

β = 1.0
S = 9.35 bits( 

S
 −

 S
 )

 / 
S

^

N

−0.4
    
    
    
   0
    
    

 0.3

β = 0.02
K = 2000 (half empty)
S = 5.16 bits

( 
S

 −
 S

 )
 / 

S
^

−0.2

   0

    

 0.4
Zipf’s law: q

i
 ~ 1/i

K = 1000
S = 7.49 bits

( 
S

 −
 S

 )
 / 

S
^

  10   30  100  300  1000  3000 10000
−0.2

   0

    

 0.4
q

i
 ~ 50 − 4 (ln i)2

K = 1000
S = 4.68 bits

( 
S

 −
 S

 )
 / 

S
^

N

Notes:
1. Relative error ∼ 10% at N as low as 30 for K = 1000.

2. Reliable estimation of error.

3.

Typical Zipf plots like ni = a(β,N)− b(β) ln i

Too smooth longer tails (e.g., Zipf’s law qi ∝ 1/i)
Too rough shorter tails (e.g., qi ∝ 50− 4(ln i)2)

4. No bias. Possible exception: too smooth distributions.

5. Key point: learn entropies directly without finding {qi}!

The dominant value of β
saturates for typical distri-
butions. It drifts down (to-
wards more complex mod-
els with larger phase space)
for overly rough distribu-
tions and up (towards sim-
pler models) for too smooth
cases.

N 1/2 full Zipf rough
units ·10−2 ·10−1 ·10−3

10 1.7 1907 16.8
30 2.2 0.99 11.5

100 2.4 0.86 12.9
300 2.2 1.36 8.3

1000 2.1 2.24 6.4
3000 1.9 3.36 5.4

10000 2.0 4.89 4.5
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