Entropy and Inference, Revisited

Ilya Nemenman, ${ }^{1,3}$ Fariel Shafee, ${ }^{2}$ William Bialek ${ }^{1,2}$
${ }^{1}$ NEC Research Institute
${ }^{2}$ Princeton University
${ }^{3}$ University of California, Santa Barbara

We study properties of popular, near-uniform, priors for learning undersampled probability distributions on discrete nonmetric spaces and show that they lead to disastrous results. However, an Occam-style phase space argument allows us to salvage the priors and turn the problems into a surprisingly good estimator of entropies of discrete distributions.

Undersampled learning of probabilities on

continuous spaces (weather, stocks,...):

Possible outcomes
Probability density
Observed data
Undersampled regime
Smoothness
Regularization of learning Model selection
Prior-insensitive learning

$x_{\mu}, \mu=1 \ldots N$
always
$\partial^{\eta} Q / \partial x^{\eta}$ is small local: punish for $\partial^{\eta} Q / \partial x^{\eta} \gg 1$ phase space volume, self-consistent probably possible
discrete nonmetric spaces (languages, bioinformatics,...):

Discrete outcomes (bins)
Probability mass
Observed bin occupancy
Undersampled regime
Smoothness
Regularization of learning

Model selection
Prior-insensitive learning

$$
i, i=1 \ldots K
$$

$$
q_{i}
$$

n_{i}
$\sum_{i=1}^{K} n_{i} \equiv N \ll K$ undefined
ultralocal: $\mathcal{P}\left(\left\{q_{i}\right\}\right)=\prod \mathcal{P}_{i}\left(q_{i}\right)$
global: $\mathcal{P}\left(\left\{q_{i}\right\}\right)=F($ entropy $)$
unknown
probably impossible for $N \ll K$

Our options (for discrete case):

1. Define smoothness as high entropy or low mutual information distributions.
2. Prior-insensitive learning of useful functions (like entropy) may be possible for $N \ll K$ even if it's impossible for $\left\{q_{i}\right\}$.

We choose:
Learning entropy with nearly uniform priors
Family of priors:
(Dirichlet priors)

$$
\mathcal{P}_{\beta}\left(\left\{q_{i}\right\}\right)=\frac{1}{Z(\beta)} \delta\left(1-\sum_{i=1}^{K} q_{i}\right) \prod_{i=1}^{K} q_{i}^{\beta-1}
$$

Generation of distributions from this family:

Successively select each q_{i} according to

$$
\begin{aligned}
P\left(q_{i}\right) & =B\left(\frac{q_{i}}{1-\sum_{j<i} q_{j}} ; \beta,(K-i) \beta\right) \\
B(x ; a, b) & =\frac{x^{a-1}(1-x)^{b-1}}{B(a, b)}
\end{aligned}
$$

Typical distributions ($K=1000$):

Bayesian inference:

$$
\begin{aligned}
P_{\beta}\left(\left\{q_{i}\right\} \mid\left\{n_{i}\right\}\right) & =\frac{P\left(\left\{n_{i}\right\} \mid\left\{q_{i}\right\}\right) \mathcal{P}_{\beta}\left(\left\{q_{i}\right\}\right)}{P_{\beta}\left(\left\{n_{i}\right\}\right)} \\
P\left(\left\{n_{i}\right\} \mid\left\{q_{i}\right\}\right) & =\prod_{i=1}^{K}\left(q_{i}\right)^{n_{i}} \\
\left\langle q_{i}\right\rangle_{\beta} & =\frac{n_{i}+\beta}{N+K \beta}
\end{aligned}
$$

Some common choices:

Maximum likelihood
Laplace's successor rule
Krichevsky-Trofimov estimator

$$
\beta \rightarrow 0
$$

$$
\beta=1
$$

Schurmann-Grassberger estimator $\beta=1 / K$

A priori expectations about the entropy:

$$
\mathcal{P}_{\beta}(S)=\int d q_{1} d q_{2} \cdots d q_{K} P_{\beta}\left(\left\{q_{i}\right\}\right) \delta\left[S+\sum_{i=1}^{K} q_{i} \log _{2} q_{i}\right]
$$

The first few moments of $\mathcal{P}_{\beta}(S)$ are

$$
\begin{aligned}
\xi(\beta) & \equiv\left\langle S\left[n_{i}=0\right]\right\rangle_{\beta} \\
& =\psi_{0}(K \beta+1)-\psi_{0}(\beta+1) \\
\sigma^{2}(\beta) & \equiv\left\langle(\delta S)^{2}\left[n_{i}=0\right]\right\rangle_{\beta} \\
& =\frac{\beta+1}{K \beta+1} \psi_{1}(\beta+1)-\psi_{1}(K \beta+1) \\
\psi_{m}(x) & =(d / d x)^{m+1} \log _{2} \Gamma(x) \text {-the polygamma function }
\end{aligned}
$$

Problem: entropy is known a priori for $K \gg 1$

Properties:

1. Because of the phase space factors (Jacobian) of the $\left\{q_{i}\right\} \rightarrow S$ transformation, a priori distribution of entropy is strongly peaked.
2. The peak is narrow: $\max \sigma(\beta)=0.61$ bits $\ll \log _{2} K$ at $\beta \approx$ $1 / K ; \sigma(\beta) \propto 1 / \sqrt{K \beta}$ for $K \beta \gg 1 ; \sigma(\beta) \propto \sqrt{K \beta}$ for $K \beta \ll 1$.
3. As β varies from 0 to ∞, the peak smoothly moves from $\xi(\beta)=$ 0 to $\log _{2} K$. For any finite $\beta, \xi(\beta)=\log _{2} K-O\left(K^{0}\right)$.

Problems:

1. No a priori way to specify β.
2. Choosing β fixes allowed "shapes" of $\left\{q_{i}\right\}$, (cf. Panel 2) and thus defines the a priori expectation of entropy.
3. Since, for large $K \beta, \sigma(\beta) \sim 1 / \sqrt{K \beta}$ it takes $N \sim K$ data to influence entropy estimation.
4. All common estimators (cf. Panel 3) are, therefore, bad for learning entropies.

Elaboration: problems of common estimators

Maximum likelihood:
 $\mathcal{P}_{0}(S)=\delta(S)$

1. Even $\left.P_{0}(S)\right|_{N=1}=\delta(S)$.
2. In general, S_{ML} always has a downwards bias.
3. $S=S_{\mathrm{ML}}+\frac{K^{*}}{2 N}+O\left(\frac{1}{N^{2}}\right), K^{*}=K-1$, is an asymptotically valid correction. However, non-asymptotic choices of K^{*} are ad hoc and cannot estimate variance.

Laplace and KT: $\quad \sigma(\beta=1,1 / 2) \sim 1 / \sqrt{K}$

Schurmann-Grassberger:

Learning the $\beta=$ 0.02 distribution from Panel 2 with $\beta=$ $0.001,0.02$, 1 . The actual error of the estimators is plotted; the error bars are the standard deviations of the posteriors. The "wrong" estimators are very certain but nonetheless incorrect.
$\sigma(1 / K) \approx 0.61$ bit.

1. Maximizes a priori entropy variance.
2. The least biased of the Dirichlet family.
3. Still strongly biased towards $S=1 / \ln 2$ bits.

Removal of the a priori bias

We need: such $\mathcal{P}\left(\left\{q_{i}\right\}\right)$ that $\mathcal{P}\left(S\left[q_{i}\right]\right)$ is (almost) uniform.

Our options:

1. $\mathcal{P}_{\beta}^{\text {flat }}\left(\left\{q_{i}\right\}\right)=\frac{\mathcal{P}_{\beta}\left(\left\{q_{i}\right\}\right)}{\mathcal{P}_{\beta}\left(S\left[q_{i}\right]\right)}-$ difficult.
2. $\mathcal{P}(S) \sim 1=\int \delta(S-\xi) d \xi$. Easy: $\mathcal{P}_{\beta}(S)$ is almost a δ-function!

Solution: Average over β - infinite Dirichlet mixtures

$$
\begin{gathered}
\mathcal{P}\left(\left\{q_{i}\right\} ; \beta\right)=\frac{1}{Z} \delta\left(1-\sum_{i=1}^{K} q_{i}\right) \prod_{i=1}^{K} q_{i}^{\beta-1} \frac{d \xi(\beta)}{d \beta} \mathcal{P}(\xi(\beta)) \\
\widehat{S^{m}} \\
=\frac{\int d \xi \rho\left(\xi,\left\{n_{i}\right\}\right)\left\langle S^{m}\left[n_{i}\right]\right\rangle_{\beta(\xi)}}{\int d \xi \rho\left(\xi,\left[n_{i}\right)\right)} \\
\rho\left(\xi,\left[n_{i}\right]\right) \\
=\mathcal{P}(\xi) \frac{\Gamma(K \beta(\xi))}{\Gamma(N+K \beta(\xi))} \prod_{i=1}^{K} \frac{\Gamma\left(n_{i}+\beta(\xi)\right)}{\Gamma(\beta(\xi))} .
\end{gathered}
$$

Notes:

1. $d \xi / d \beta$ insures a priori uniformity over expected entropy.
2. $\mathcal{P}(\xi)$ embodies actual expectations about entropy.
3. Smaller β means larger allowed volume in the space of $\left\{q_{i}\right\}$. Thus averaging over β is Bayesian model selection (cf. Panel 1).
4. If $\rho(\xi)$ is peaked, then some $\beta(\xi)$ (model) dominates (is "selected"), and the variance of the estimator is small.

Results: unbiased estimation of entropy

Typical distributions (cf. Panel 2)

Atypical distributions

Notes:

1. Relative error $\sim 10 \%$ at N as low as 30 for $K=1000$.
2. Reliable estimation of error.

Typical \quad Zipf plots like $n_{i}=a(\beta, N)-b(\beta) \ln i$
3. Too smooth longer tails (e.g., Zipf's law $q_{i} \propto 1 / i$)

Too rough shorter tails (e.g., $\left.q_{i} \propto 50-4(\ln i)^{2}\right)$
4. No bias. Possible exception: too smooth distributions.
5. Key point: learn entropies directly without finding $\left\{q_{i}\right\}$!

The dominant value of β saturates for typical distributions. It drifts down (towards more complex models with larger phase space) for overly rough distributions and up (towards simpler models) for too smooth cases.

N	$1 / 2$ full	Zipf	rough
units	$\cdot 10^{-2}$	$\cdot 10^{-1}$	$\cdot 10^{-3}$
10	1.7	1907	16.8
30	2.2	0.99	11.5
100	2.4	0.86	12.9
300	2.2	1.36	8.3
1000	2.1	2.24	6.4
3000	1.9	3.36	5.4
10000	2.0	4.89	4.5

V. Balasubramanian, Neural Comp. 9, 349-368 (1997), adap-org/9601001.
W. Bialek, C. Callan, and S. Strong, Phys. Rev. Lett. 77, 46934697 (1996), cond-mat/9607180.
W. Bialek, I. Nemenman, N. Tishby, Neural Comp. 13, 24092463 (2001), physics/0007070.
K. Karplus, TR UCSC-CRL-95-11, UC Santa Cruz, Computer Science Department (1995).
S. Ma, J. Stat. Phys. 26, 221 (1981).
D. MacKay, Neural Comp. 4, 415-448 (1992).
I. Nemenman, Ph.D. Thesis, Princeton, (2000), ch. 3, physics/0009032.
I. Nemenman and W. Bialek, Advances in Neural Inf. Processing Systems 13, 287-293 (2001), cond-mat / 0009165.
S. Panzeri and A. Treves, Network: Comput. in Neural Syst. 7, 87-107 (1996).
T. Schurmann and P. Grassberger, Chaos 6, 414-427 (1996).
J. Skilling, in Maximum entropy and Bayesian methods, J. Skilling ed. (Kluwer Academic Publ., Amsterdam, 1989), pp. 45-52.
S. Strong et al., Phys. Rev. Lett. 80, 197-200 (1998), cond-mat/9603127.
F. Willems, Y. Shtarkov, and T. Tjalkens, IEEE Trans. Inf. Thy., 41, 653-664 (1995).
D. Wolpert and D. Wolf, Phys. Rev. E, 52, 6841-6854 (1995), comp-gas/9403001.

