Coincidences and entropies of undersampled distributions

Ilya Nemenman CCS-3

IT based data analysis

- Bioinformatics
 - Correlation analysis (network topology)
 - Overabundance of elements (TF binding sites search)
 - Channel capacity of signaling pathways
- Neurobiology
 - Channel capacity of neuronal pathways
 - Adaptation to maximize information transmission
- Structural biology
 - Free energy calculations for alternative protein confirmations
- Rare events search
- Others: Linguistics, Finance, TR...

Unclassified

Undersampling and entropy estimation

Maximum likelihood estimation:

Undersampling and entropy estimation

$$\langle S_{ML} \rangle \leq -\sum_{i} \frac{\langle n_{i} \rangle}{N} \log \frac{\langle n_{i} \rangle}{N} = S$$

$$\log K \longrightarrow \sum_{i} \frac{2^{S}}{N} \gg \text{(variance)}^{1/2} \approx \frac{1}{\sqrt{N}}$$
The underestimate entropies and everestimate mutus

- Fluctuations underestimate entropies and overestimate mutual informations.
- Universal bias correction possible IFF K<N (Grassberger 89-03, Antos and Kontoyiannins 02, Wyner and Foster 03, Batu et al. 02, Paninski 03, Panzeri and Treves 96, Strong et al. 98)

For N<K:

- Assumptions needed (won't work uniformly).
- Estimate entropies without estimating distributions.

4

Hope (Ma, 1981)

For uniform *K*-bin distribution the first coincidence occurs for

$$N_c \sim \sqrt{K} = \sqrt{2^S}$$

 $S \sim 2 \log N_c$ Time of first coincidence

- Can make estimates for square-root-fewer samples!
- Can this be extended to nonuniform cases?

What is unknown?

Binomial distribution:

$$S = -p \log p -$$

$$(1-p)\log(1-p)$$

Selection of wrong "unknown" biases estimation

Assume (Bayes)

One possible S-uniformization strategy

For Dirichlet pseudocount priors (uniform, ML, KT, etc.)

$$P_{\beta}(\lbrace q_{i}\rbrace) \propto \delta\left(1 - \sum_{i=1}^{K} q_{i}\right) \prod_{i=1}^{K} q_{i}^{\beta-1}$$

The entropy is known a priori for K >> 1.

Uniformize:

$$P_{\beta}(\{q_i\}, \beta) = \frac{1}{Z} \delta\left(1 - \sum_{i=1}^{K} q_i\right) \prod_{i=1}^{K} q_i^{\beta} \frac{dS}{d\beta} \bigg|_{N=0} P(S|_{N=0})$$

- Infinite Dirchlet mixture.
- A delta-function sliding along the a priori entropy expectation -- producing (almost) uniform expectations.

Properties of the NSB estimator

- Posterior variance scales as N^{-0.5}.
- Asymptotically consistent (is guaranteed correct for large N).
- Allows infinite # of bins.
- Little bias for light rank-order tail distributions.
- Is also Bayesian model selection (choosing the right mixture component).
- Has error bars!
- Counts coincidences and works in Ma regime (if works).

$$\langle \delta^2 S \rangle = \frac{1}{\text{(# of coincidences)}} + \cdots$$

(Nemenman et al. 2002, 03, 04, 06)

Unclassified

Synthetic test

Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms, *T*=15ms, discretization 0.5ms, true entropy 13.57 bits.

