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IT based data analysis

 Bioinformatics
 Correlation analysis (network topology)
 Overabundance of elements (TF binding sites search)
 Channel capacity of signaling pathways

 Neurobiology
 Channel capacity of neuronal pathways
 Adaptation to maximize information transmission

 Structural biology
 Free energy calculations for alternative protein confirmations

 Rare events search
 Others: Linguistics, Finance, TR…
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Undersampling and entropy estimation

Maximum likelihood estimation: 

S
ML

= !
n
i

N
log

n
i

N
i

"

S
ML

! "
n
i

N
log

n
i

N
= S

i

#

 pi ,!!i = 1…K pi
ML

=
ni

N

!

(N - sample size)(K - # of bins)
i =   1     2     3     4     5     6 



Unclassified 4

Undersampling and entropy estimation
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• Fluctuations underestimate entropies and overestimate mutual informations.
• Universal bias correction possible IFF K<N (Grassberger 89-03, Antos and

Kontoyiannins 02, Wyner and Foster 03, Batu et al. 02, Paninski 03, Panzeri
and Treves 96, Strong et al. 98)

For N<K:
• Assumptions needed (won’t work uniformly).
• Estimate entropies without estimating distributions.
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Hope (Ma, 1981)

For uniform K-bin distribution the first coincidence occurs for
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• Can make estimates for square-root-fewer samples!
• Can this be extended to nonuniform cases?

Time of first coincidence
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What is unknown?

Binomial distribution:
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Selection of wrong “unknown”
biases estimation
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One possible S-uniformization strategy
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For Dirichlet pseudocount priors 
(uniform, ML, KT, etc.)

The entropy is known a priori for K>>1.
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Uniformize:

 Infinite Dirchlet mixture.
 A delta-function sliding along the a priori entropy expectation -- producing

(almost) uniform expectations.



Unclassified 8

Properties of the NSB estimator

 Posterior variance scales as N-0.5.
 Asymptotically consistent (is guaranteed correct for large N).
 Allows infinite # of bins.
 Little bias for light rank-order tail distributions.
 Is also Bayesian model selection (choosing the right mixture

component).
 Has error bars!
 Counts coincidences and works in Ma regime (if works).

(Nemenman et al. 2002, 03, 04, 06)

 

!
2
S =

1

# of coincidences( )
+!



Unclassified 9

Synthetic test

Refractory Poisson, rate 0.26 spikes/ms, refractory period 1.8 ms,
T=15ms, discretization 0.5ms, true entropy 13.57 bits.

(Nemenman et al. 2004)


