On impossibility of learning in a reparameterization covariant way

Timothy Holy
Washington University Medical School holy@pcg. wustl.edu

llya Nemenman
KITP, UCSB
nemenman@kitp.ucsb.edu

Background: Bayesian inference of probability density

Background: Bayesian inference of probability density

$$
Q(x)=\left\{\begin{array}{l}
\frac{1}{l_{0}} \mathrm{e}^{\phi(x)} \\
\phi^{2}(x)
\end{array}\right. \text { Enforcing positivity of density }
$$

Background: Bayesian inference of probability density

$$
\begin{gathered}
Q(x)=\left\{\begin{array}{c}
\frac{1}{l_{0}} \mathrm{e}^{\phi(x)} \\
\phi^{2}(x)
\end{array}\right. \text { Enforcing positivity of density } \\
\mathcal{P}[\phi(x)]=\frac{1}{Z} \exp \left\{-\frac{\ell^{2 \eta-1}}{2} \int d x\left(\frac{\partial^{\eta} \phi}{\partial x^{\eta}}\right)^{2}\right\} \delta\left[\int d x Q(\phi(x))-1\right]
\end{gathered}
$$

Background: Bayesian inference of probability density

$$
\begin{gathered}
Q(x)=\left\{\begin{array}{c}
\frac{1}{l_{0}} \mathrm{e}^{\phi(x)} \\
\phi^{2}(x)
\end{array}\right. \text { Enforcing positivity of density } \\
\mathcal{P}[\phi(x)]=\frac{1}{Z} \exp \left\{-\frac{\ell^{2 \eta-1}}{2} \int d x\left(\frac{\partial^{\eta} \phi}{\partial x^{\eta}}\right)^{2}\right\} \delta\left[\int d x Q(\phi(x))-1\right]
\end{gathered}
$$

Consistent, bias and variance are known.

Background: Bayesian inference of probability density

$$
\begin{gathered}
Q(x)=\left\{\begin{array}{c}
\frac{1}{l_{0}} \mathrm{e}^{\phi(x)} \\
\phi^{2}(x)
\end{array}\right. \text { Enforcing positivity of density } \\
\mathcal{P}[\phi(x)]=\frac{1}{Z} \exp \left\{-\frac{\ell^{2 \eta-1}}{2} \int d x\left(\frac{\partial^{\eta} \phi}{\partial x^{\eta}}\right)^{2}\right\} \delta\left[\int d x Q(\phi(x))-1\right]
\end{gathered}
$$

Consistent, bias and variance are known.

$$
\operatorname{Var} \psi(x) \propto(N P(x))^{1 / 2 \eta-1}, \text { where } \psi(x)=\phi(x)-\phi_{\text {true }}(x)
$$

Background: reparameterization problem

$$
\begin{aligned}
x & \longrightarrow z=z(x) \\
Q(x) & \longrightarrow Q(z)=Q(x(z))\left|\frac{d x}{d z}\right|
\end{aligned}
$$

Background: reparameterization problem

$$
\begin{aligned}
x & \longrightarrow z=z(x) \\
Q(x) & \longrightarrow Q(z)=Q(x(z))\left|\frac{d x}{d z}\right|
\end{aligned}
$$

The prior above is not reparameterization-invariant. Thus reparameterization covariance does not hold.

Background: reparameterization covariant learning?

$$
Q(x)=\sqrt{|g(x)|} \widetilde{Q}(x)=\sqrt{|g|} \widetilde{Q}(\widetilde{\phi}(x))
$$

Background: reparameterization covariant learning?

$$
\begin{aligned}
Q(x) & =\sqrt{|g(x)|} \widetilde{Q}(x)=\sqrt{|g|} \widetilde{Q}(\widetilde{\phi}(x)) \\
\mathcal{P}[\widetilde{\phi}(x)] & =\frac{1}{Z} \exp \left\{-\frac{1}{2} \int d x \sqrt{|g|}^{2 \eta-1}\left(\frac{\partial^{\eta} \widetilde{\phi}}{\partial x^{\eta}}\right)^{2}\right\} \\
& \times \delta\left[\int d x \sqrt{|g|} \widetilde{Q}(\phi(x))-1\right]
\end{aligned}
$$

Background: reparameterization covariant learning?

$$
\begin{aligned}
Q(x) & =\sqrt{|g(x)|} \widetilde{Q}(x)=\sqrt{|g|} \widetilde{Q}(\widetilde{\phi}(x)) \\
\mathcal{P}[\widetilde{\phi}(x)] & =\frac{1}{Z} \exp \left\{-\frac{1}{2} \int d x \sqrt{|g|}{ }^{2 \eta-1}\left(\frac{\partial^{\eta} \widetilde{\phi}}{\partial x^{\eta}}\right)^{2}\right\} \\
& \times \delta\left[\int d x \sqrt{|g|} \widetilde{Q}(\phi(x))-1\right]
\end{aligned}
$$

Is this really a solution?

Background: reparameterization covariant learning?

$$
\begin{aligned}
Q(x) & =\sqrt{|g(x)|} \widetilde{Q}(x)=\sqrt{|g|} \widetilde{Q}(\widetilde{\phi}(x)) \\
\mathcal{P}[\widetilde{\phi}(x)] & =\frac{1}{Z} \exp \left\{-\frac{1}{2} \int d x \sqrt{|g|}^{2 \eta-1}\left(\frac{\partial^{\eta} \widetilde{\phi}}{\partial x^{\eta}}\right)^{2}\right\} \\
& \times \delta\left[\int d x \sqrt{|g|} \widetilde{Q}(\phi(x))-1\right]
\end{aligned}
$$

Is this really a solution?
 What is to prevent variability of g ?

Suspicion: one dimension

In one dimension

Suspicion: one dimension

In one dimension

- all differential-geometric properties are due to embedding (parameterization);

Suspicion: one dimension

In one dimension

- all differential-geometric properties are due to embedding (parameterization);
- no intrinsic curvature to identify complexity;

Suspicion: one dimension

In one dimension

- all differential-geometric properties are due to embedding (parameterization);
- no intrinsic curvature to identify complexity;
- No way to regularize metric covariantly.

Counterargument: definitions

Learning operator L :

$$
L\left\{x_{i}, i=1 \ldots N\right\}=Q(x)
$$

Counterargument: definitions

Learning operator L :

$$
L\left\{x_{i}, i=1 \ldots N\right\}=Q(x)
$$

Reparameterization operator R_{z} :

$$
R_{z} x=z(x)
$$

Counterargument: definitions

Learning operator L :

$$
L\left\{x_{i}, i=1 \ldots N\right\}=Q(x)
$$

Reparameterization operator R_{z} :

$$
\begin{aligned}
R_{z} x= & z(x) \\
R_{z} Q(x)= & Q(x(z)) J(z) \quad Q(x) \text { is non-singular } \\
& J^{-1}(z)=|d x / d z|
\end{aligned}
$$

Counterargument: definitions

Learning operator L :

$$
L\left\{x_{i}, i=1 \ldots N\right\}=Q(x)
$$

Reparameterization operator R_{z} :

$$
\begin{aligned}
R_{z} x= & z(x) \\
R_{z} Q(x)= & Q(x(z)) J(z) \quad Q(x) \text { is non-singular } \\
& J^{-1}(z)=|d x / d z|
\end{aligned}
$$

Reparameterization covariance:

$$
\left[R_{z}, L\right]=0
$$

Counterargument: the essence

Choose reparameterization:

$$
z_{i}=R_{z} x_{i}=x_{i}
$$

Counterargument: the essence

Choose reparameterization:

$$
z_{i}=R_{z} x_{i}=x_{i}
$$

Then:

$$
L R_{z}\left\{x_{i}\right\}=L\left\{x_{i}\right\} \equiv Q(x)
$$

Counterargument: the essence

Choose reparameterization:

$$
z_{i}=R_{z} x_{i}=x_{i}
$$

Then:

$$
\begin{aligned}
L R_{z}\left\{x_{i}\right\} & =L\left\{x_{i}\right\} \equiv Q(x) \\
R_{z} L\left\{x_{i}\right\} & =R_{z} Q(x)=J(z) Q(z)
\end{aligned}
$$

Counterargument: the essence

Choose reparameterization:

$$
z_{i}=R_{z} x_{i}=x_{i}
$$

Then:

$$
\begin{aligned}
L R_{z}\left\{x_{i}\right\} & =L\left\{x_{i}\right\} \equiv Q(x) \\
R_{z} L\left\{x_{i}\right\} & =R_{z} Q(x)=J(z) Q(z) \\
{\left[R_{a}, L\right] } & =(J-1) L
\end{aligned}
$$

Counterexample: result

$$
\left[R_{z}, L\right] \text { is zero for } z=x .
$$

Counterexample: result

- $\left[R_{z}, L\right]$ is zero for $z=x$.
- $\left[R_{z}, L\right]$ is zero for $L\left\{x_{i}\right\}=1 / N \sum \delta\left(x-x_{i}\right)$ (overfits hopelessly).

Counterexample: result

- $\left[R_{z}, L\right]$ is zero for $z=x$.
- $\left[R_{z}, L\right]$ is zero for $L\left\{x_{i}\right\}=1 / N \sum \delta\left(x-x_{i}\right)$ (overfits hopelessly).
- $\left[R_{z}, L\right]$ nonzero otherwise.

Counterexample: result

- $\left[R_{z}, L\right]$ is zero for $z=x$.
- $\left[R_{z}, L\right]$ is zero for $L\left\{x_{i}\right\}=1 / N \sum \delta\left(x-x_{i}\right)$ (overfits hopelessly).
- $\left[R_{z}, L\right]$ nonzero otherwise.

Reason: There are infinitely many ways to reparameterize $\left\{x_{i}\right\}$ into equally spaced $\left\{z_{i}\right\}$. Without a priori constraints on coordinates, the data are uninformative.

Reparameterization problem: generalization, previous history

- Any nontrivially transforming quantity will have the same problem.

Reparameterization problem: generalization, previous history

- Any nontrivially transforming quantity will have the same problem.
- Cucker and Smale: learning error bounded by the determinant of the operator mapping between assumed measure and the (unknown) true one [equivalently, J (uniform, true) <].

Reparameterization problem: generalization, previous history

- Any nontrivially transforming quantity will have the same problem.
- Cucker and Smale: learning error bounded by the determinant of the operator mapping between assumed measure and the (unknown) true one [equivalently, J (uniform, true) <].
- Learning is minimizing risk:

$$
\mathcal{R}=\int d x Q(x) \mathcal{L}(Q, x)
$$

Reparameterization problem: generalization, previous history

- Any nontrivially transforming quantity will have the same problem.
- Cucker and Smale: learning error bounded by the determinant of the operator mapping between assumed measure and the (unknown) true one [equivalently, J (uniform, true) <].
- Learning is minimizing risk:

$$
\mathcal{R}=\int d x Q(x) \mathcal{L}(Q, x)
$$

If no constraints on coordinates, then $\exists g(x), \Delta X: \mu(\Delta X) \rightarrow 0, R(\Delta X) \rightarrow$ number (or ∞).

Approximate covariance?

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P^{\beta}(x)}
$$

Approximate covariance?

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P^{\beta}(x)} \quad \begin{aligned}
& \text { Bounds can be build through } \\
& \text { Chebyshev inequality. }
\end{aligned}
$$

Approximate covariance?

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P^{\beta}(x)} \quad \begin{aligned}
& \text { Bounds can be build through } \\
& \text { Chebyshev inequality. }
\end{aligned}
$$

- No uniform bounds exist.

Approximate covariance?

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P^{\beta}(x)} \quad \begin{aligned}
& \text { Bounds can be build through } \\
& \text { Chebyshev inequality. }
\end{aligned}
$$

- No uniform bounds exist.
- Reparameterization may make $P(x) \rightarrow 0$ and $\operatorname{Var} \psi(x) \rightarrow \infty$.

Approximate covariance?

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P^{\beta}(x)} \quad \begin{aligned}
& \text { Bounds can be build through } \\
& \text { Chebyshev inequality. }
\end{aligned}
$$

- No uniform bounds exist.
- Reparameterization may make $P(x) \rightarrow 0$ and $\operatorname{Var} \psi(x) \rightarrow \infty$.
- This is because coordinate system \Leftrightarrow probability density, and smoothness is defined in a particular coordinate system.

Approximate covariance?

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P^{\beta}(x)} \quad \text { Bounds can be build through }
$$

- No uniform bounds exist.
- Reparameterization may make $P(x) \rightarrow 0$ and $\operatorname{Var} \psi(x) \rightarrow \infty$.
- This is because coordinate system \Leftrightarrow probability density, and smoothness is defined in a particular coordinate system.

Even approximate covariance does not hold if arbitrary transformations are allowed.

Approximate covariance: assumptions needed

If $P(x) \geq P_{0}>0$ (equivalently, uniform measure is absolutely continuous with respect to the true measure), then

Approximate covariance: assumptions needed

If $P(x) \geq P_{0}>0$ (equivalently, uniform measure is absolutely continuous with respect to the true measure), then

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P_{0}^{\beta}}
$$

Approximate covariance: assumptions needed

If $P(x) \geq P_{0}>0$ (equivalently, uniform measure is absolutely continuous with respect to
the true measure), then

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P_{0}^{\beta}}
$$

- Assuming "reasonable" coordinate system leads to uniform bounds and approximate covariance for some class of coordinates.

Approximate covariance: assumptions needed

If $P(x) \geq P_{0}>0$ (equivalently, uniform measure is absolutely continuous with respect to the true measure), then

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P_{0}^{\beta}}
$$

- Assuming "reasonable" coordinate system leads to uniform bounds and approximate covariance for some class of coordinates.
- Assumption must not be hard, but may be smoothly enforced by priors, e. g.:

$$
\mathcal{P}[\phi] \propto \exp \left[\lambda \int d x \log Q\right]
$$

Approximate covariance: assumptions needed

If $P(x) \geq P_{0}>0$ (equivalently, uniform measure is absolutely continuous with respect to the true measure), then

$$
\operatorname{Var} \psi(x) \propto \frac{1}{N^{\alpha} P_{0}^{\beta}}
$$

- Assuming "reasonable" coordinate system leads to uniform bounds and approximate covariance for some class of coordinates.
- Assumption must not be hard, but may be smoothly enforced by priors, e. g.:

$$
\mathcal{P}[\phi] \propto \exp \left[\lambda \int d x \log Q\right] \quad \text { (choosing 入?) }
$$

Covariance-approximation tradeoff

As $P_{0} \rightarrow 0$ with uniform bound still finite, full covariance is restored.

Covariance-approximation tradeoff

As $P_{0} \rightarrow 0$ with uniform bound still finite, full covariance is restored. But:

$$
\operatorname{Var} \psi(x) P_{0}^{\beta} \propto \frac{1}{N^{\alpha}}
$$

Covariance-approximation tradeoff

As $P_{0} \rightarrow 0$ with uniform bound still finite, full covariance is restored. But:

$$
\operatorname{Var} \psi(x) P_{0}^{\beta} \propto \frac{1}{N^{\alpha}}
$$

Thus there is a tradeoff between the quality of covariance (as measured by P_{0}) and the approximation (as measured by Var ψ).

Covariance-approximation tradeoff

As $P_{0} \rightarrow 0$ with uniform bound still finite, full covariance is restored. But:

$$
\operatorname{Var} \psi(x) P_{0}^{\beta} \propto \frac{1}{N^{\alpha}}
$$

Thus there is a tradeoff between the quality of covariance (as measured by P_{0}) and the approximation (as measured by Var ψ).

- Balance is governed by N.

Covariance-approximation tradeoff

As $P_{0} \rightarrow 0$ with uniform bound still finite, full covariance is restored. But:

$$
\operatorname{Var} \psi(x) P_{0}^{\beta} \propto \frac{1}{N^{\alpha}}
$$

Thus there is a tradeoff between the quality of covariance (as measured by P_{0}) and the approximation (as measured by Var ψ).

- Balance is governed by N.
- Details of the balance are assumption-dependent.

Covariance-approximation tradeoff

As $P_{0} \rightarrow 0$ with uniform bound still finite, full covariance is restored. But:

$$
\operatorname{Var} \psi(x) P_{0}^{\beta} \propto \frac{1}{N^{\alpha}}
$$

Thus there is a tradeoff between the quality of covariance (as measured by P_{0}) and the approximation (as measured by Var ψ).

- Balance is governed by N.
- Details of the balance are assumption-dependent.
- We conjecture such tradeoff to be a general feature.

Covariance-approximation tradeoff

As $P_{0} \rightarrow 0$ with uniform bound still finite, full covariance is restored. But:

$$
\operatorname{Var} \psi(x) P_{0}^{\beta} \propto \frac{1}{N^{\alpha}}
$$

Thus there is a tradeoff between the quality of covariance (as measured by P_{0}) and the approximation (as measured by Var ψ).

- Balance is governed by N.
- Details of the balance are assumption-dependent.
- We conjecture such tradeoff to be a general feature.
- How can this balance be self-consistently selected?

Implications

- The world seems to be continuous.

Implications

- The world seems to be continuous.
- Various convergence bounds are usually proven for finite alphabets, pre-defined partitionings (structures), finite-parameter systems.

Implications

- The world seems to be continuous.
- Various convergence bounds are usually proven for finite alphabets, pre-defined partitionings (structures), finite-parameter systems.
- One should be careful that chosen quantization is appropriate.

Implications

- The world seems to be continuous.
- Various convergence bounds are usually proven for finite alphabets, pre-defined partitionings (structures), finite-parameter systems.
- One should be careful that chosen quantization is appropriate.
- One should check if the obtained "great learning performance" is a result of constraining parameterization and/or discretization.

