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dxQ(φ(x))− 1

]
Consistent, bias and variance are known.

Varψ(x) ∝ (NP (x))1/2η−1, where ψ(x) = φ(x)− φtrue(x)
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Background: reparameterization problem

x −→ z = z(x)

Q(x) −→ Q(z) = Q(x(z))
∣∣∣∣dxdz
∣∣∣∣

The prior above is not reparameterization–invariant.

Thus reparameterization covariance does not hold.
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× δ
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√
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Is this really a solution?

What is to prevent variability of g?
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Suspicion: one dimension

In one dimension

• all differential–geometric properties are due to

embedding (parameterization);

• no intrinsic curvature to identify complexity;

• No way to regularize metric covariantly.
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Counterargument: definitions

Learning operator L:

L{xi, i = 1 . . . N} = Q(x)
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Counterargument: definitions

Learning operator L:

L{xi, i = 1 . . . N} = Q(x)

Reparameterization operator Rz:

Rzx = z(x)

RzQ(x) = Q(x(z))J(z) Q(x) is non–singular

J−1(z) = |dx/dz|

Reparameterization covariance:

[Rz, L] = 0
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Counterargument: the essence
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Counterargument: the essence

Choose reparameterization:

zi = Rzxi = xi

Then:

LRz{xi} = L{xi} ≡ Q(x)

RzL {xi} = RzQ(x) = J(z)Q(z)

[Ra, L] = (J − 1)L
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Counterexample: result

• [Rz, L] is zero for z = x.
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Counterexample: result

• [Rz, L] is zero for z = x.

• [Rz, L] is zero for L{xi} = 1/N
∑
δ(x− xi)

(overfits hopelessly).

• [Rz, L] nonzero otherwise.

Reason: There are infinitely many ways to reparameterize {xi} into

equally spaced {zi}. Without a priori constraints on coordinates, the

data are uninformative.
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Reparameterization problem:
generalization, previous history

• Any nontrivially transforming quantity will have the same

problem.
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Reparameterization problem:
generalization, previous history

• Any nontrivially transforming quantity will have the same

problem.

• Cucker and Smale: learning error bounded by the determinant

of the operator mapping between assumed measure and the

(unknown) true one [equivalently, J(uniform, true) <∞].

• Learning is minimizing risk:

R =
∫
dxQ(x)L(Q, x) .

If no constraints on coordinates, then

∃g(x),∆X : µ(∆X) → 0, R(∆X) → number (or ∞).
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Approximate covariance?

Varψ(x) ∝ 1
NαP β(x)

Bounds can be build through

Chebyshev inequality.

• No uniform bounds exist.

• Reparameterization may make P (x) → 0 and Varψ(x) →∞.

• This is because coordinate system ⇔ probability density, and

smoothness is defined in a particular coordinate system.

Even approximate covariance does not hold if arbitrary

transformations are allowed.
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Approximate covariance: assumptions
needed

If P (x) ≥ P0 > 0 (equivalently, uniform measure is absolutely continuous with respect to

the true measure), then
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If P (x) ≥ P0 > 0 (equivalently, uniform measure is absolutely continuous with respect to
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the true measure), then
Varψ(x) ∝ 1

NαP β0
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• Assuming “reasonable” coordinate system leads to uniform

bounds and approximate covariance for some class of

coordinates.

• Assumption must not be hard, but may be smoothly enforced

by priors, e. g.:

P[φ] ∝ exp
[
λ
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Approximate covariance: assumptions
needed

If P (x) ≥ P0 > 0 (equivalently, uniform measure is absolutely continuous with respect to

the true measure), then
Varψ(x) ∝ 1

NαP β0
.

• Assuming “reasonable” coordinate system leads to uniform

bounds and approximate covariance for some class of

coordinates.

• Assumption must not be hard, but may be smoothly enforced

by priors, e. g.:

P[φ] ∝ exp
[
λ

∫
dx logQ

]
(choosing λ?)
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Covariance–approximation tradeoff

As P0 → 0 with uniform bound still finite, full covariance is restored.
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Covariance–approximation tradeoff

As P0 → 0 with uniform bound still finite, full covariance is restored.

But:

Varψ(x)P β0 ∝
1
Nα

.

Thus there is a tradeoff between the quality of covariance (as

measured by P0) and the approximation (as measured by Varψ).

• Balance is governed by N .

• Details of the balance are assumption–dependent.

• We conjecture such tradeoff to be a general feature.

• How can this balance be self–consistently selected?
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Implications

• The world seems to be continuous.

• Various convergence bounds are usually proven for finite

alphabets, pre-defined partitionings (structures),

finite–parameter systems.

• One should be careful that chosen quantization is appropriate.

• One should check if the obtained “great learning

performance” is a result of constraining parameterization

and/or discretization.
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