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Bayesian model selection for finitely
parameterizable distributions

P(z) % X = {21 ax)

l
" I

" Model family A = " Model family B A
Qa(z|a) Qp(z|B)
dimo = K4 dimB8 = Kp

5 Pa(ax), Pr(A) > 5 Pr(3), Pr(B) >

llya Nemenman, UCSB Statistics seminar, August 26, 2003



Solution

Find the model with maximum posterior probability!




Solution

Find the model with maximum posterior probability!

For example, for model A:

P(X|A)Pr(A)

P(AlX) P(X|A)Pr(A) + P(X|B)Pr(B) = Z

P(X)




Solution

Find the model with maximum posterior probability!

For example, for model A:

P(X|A)Pr(A)
P(X)

P(AlX) P(X|A)Pr(A) + P(X|B)Pr(B) = Z

back to start




Solution

Find the model with maximum posterior probability!

For example, for model A:

P(X|A)Pr(A)
P(X)

P(AlX) P(X|A)Pr(A) + P(X|B)Pr(B) = Z

back to start




(See: Bayes factors, Occam factors; Jaynes 1968, 1979)
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Fix £ and n:
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@) — QPRI Q@ I, Q)
[1dQ] PIQ] TT.L, Q(x:)
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Explicit form of correlation functions

nY

cr = [ QP[] e
_ / [d¢]€iNeS[¢]5 { / da;g—loeqb—q
Sl = 5 [ del@0 + 3 6l
N\ — _— 1

N——
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Large N approximation for n =1
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converges to changes on scale

—log QP(x) / 6z ~ \/{/NP(z)
éaa%ﬁbcl(x) + %e_¢cl(“) = Zj o(x — x;)
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Large /N approximation for n = 1, continued

C.F. ~ (1/f)Ne Serloa(s)
/
Seff[gbcl] — §/d$(a§bd)2 _l_qucl(xz)
\—/_/

goodness of fit

prior, smoothness
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Learning typical cases

10
.05, data and best fit
.2, data and best fit
.4, data and best fit
10
<
1077
]
10
10" 10° 10° 10* 10°
\
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{=0.4, (0.54 + 0.07) N ~0-483:0.014

A =
(=02 A=(0.83%£0.08)N0-493+0.09
A = (1.64 £+ 0.16) N ~0-507=0.09

¢ = 0.05,




Learning marginal outliers

10°

Ia=0.2, data and best fit
Ia=0.4, data and best fit

Ia:0.05, data and best fit

. A =1(0.56 + O.OS)N—O-477i0-015
5 A =(1.90 + 0.16)N—O.502i0.008
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Learning at ¢ = 0.2.




Learning strong outliers

1

a ! !
—— r]a:2, Ia:O.l, data, best fit

—4— Nn,=0.8, 1 =0.1, data, best fit
r]a:O.6, Ia:O.l, data, one run
r]a:O, Ia:0.12, data, one run

10 10 10° 10 10°

N

Ne = 2, £g = 0.1, A = (0.40 + 0.05)]\;—0.49310.013
Ne = 0.8, £, =0.1, A= (1.06+ O.OS)N—O.355iO.008

[lya Nemenman, UCSB Statistics seminar, August 26, 2003



22

¢ =0.1 for n, =0 and £ = 0.2 otherwise
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Calculations: What is ¢* for n, and /"

If n = n,, then . Otherwise:
0.0 <n, < 1.9 1.5 < n,
data > smoothing | smoothing > data
0* ~ N (a=1)/na 0* ~ N1/3
A ~ N1/2na—1 A~ N—2/3
best possible better, but not
performance best performance

llya Nemenman, UCSB Statistics seminar, August 26, 2003



26

qualitatively wrong smoothness 7, # 1!
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Approaching model-independend optimal inference!
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Analogies

choosing £* corresponds to selection of a structure
element with dyc = +/NL/¢* in Vapnik's SRM theory

maximizing P over model families (¢'s) asymptotically
corresponds to searching for MDL

a lot in common with the Gaussian Processes theory:;
however normalization constraint is important
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Summary

Bayesian smoothness (model) selection
works for nonparametric spline priors!
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