IU Biocomplexity, 04/27/06

#### Two notes on transcriptional regulatory networks

Ilya Nemenman (CCS-3/LANL)











# Reconstructing transcriptional networks



# Why? Maybe incomplete networks...



- Context specificity
- Post-translational/post-transcriptional modifications
- Many mRNA constitutively expressed (p53)
- mRNA data carries no information about these modulation events

#### Or does it?

# Posttranslational modulation in mRNA data

Solution: Phenotypic and population variability (even in constitutively expressed genes) induces higher order dependencies between TFs, targets, and modulators.



# Posttranslational modulation: MI signature



# Phenotypic variability of constitutive modulators



## **Genuine modulation?**



# Distinguishing genuine modulation (ARACNE, DPI)



Reparm. invariance; small sample; low complexity; good performance; low false positives.

### Synthetic networks



### B-cell dataset: cMYC network

- ~400 arrays (Dalla-Favera et al.)
- No dynamics
- ~250 naturally occurring, ~150 perturbed
- ~25 phenotypes (normal, tumors, experimental perturbations)



- Protooncogene,
- 12% background binding,
- one of top 5% hubs
- significant MI with 2000 genes

```
Total interactions: 56
Pre-known: 22
New Ch-IP validated: 11/12
```

# Enforcing irreducibility: ARACNE on a TF-hub









## c-MYC modulators

- 1117 candidate modulators
- 100 modulators, 130 targets, 205 interactions
- GO enrichment of the modulator set: kinases, acyltransferases, TFs (all p<5%)</li>
- Modulators in known MYC regulation pathways (e.g., BCR)
- TFs: 15/100, p=1e-6.
- 4/5 TF modulators (e.g., E2F5) with TRANSFAC signatures have binding sites in modulated targets promoter regions.
- Modulators with many (>=4) targets are not-specific (proteolisis, upstream signaling components, receptor signaling molecules).
- Modulators with few (1-2) effected targets are mostly co-TFs, interaction-specific.
- ~1/3 modulators are literature-validated.
- Biochemical validation of some of the predictions in progress.

# BCR pathway: Reducibility



- predicted modulators
- not in the candidate list
- TF's not predicted
- Protein complex
- Targets

# Summary of part 1

- Post-translational regulatory mechanisms visible from transcriptional data
- Sparseness of species sampling probably not the reason for bad predictability

# So why low predictive power?

- Maybe: noisiness due to small TF concentration?
- NB: reconstruction models that keep strength of the interaction besides topolgy do better (Leslie et al.)
- Maybe: adjacency matrix description just not enough (soft parameters needed)?
- Maybe: networks can adapt soft parameters to perform the tasks they want to?

#### Let's check this for simple topologies!

### **Experiments**



A Siglow to that a cterize the function of these systems?

From Mangan et al., 2003

From Guet et al., 2002

# Function = Information processing





Guet example: C={(0,0),(1,0),(0,1),(1,1)} G={+1, -1} Broken circuit: *I*(*C*,*G*)=*S*(*G*)=0

### How good are the circuits?



# Calculating P(g|c): linear noise approximation (LNA)





Evolution of probability density:

$$0 = \frac{\partial \Pi(\xi, t)}{\partial t} = -\sum_{ik} A_{ik} \frac{\partial (\xi_k \Pi)}{\partial \xi_i} + \frac{1}{2} \sum_{ik} B_{ik} \frac{\partial^2 \Pi}{\partial \xi_i \partial \xi_k}$$

Noise covariance  $\Sigma = \langle \xi \xi^T \rangle$  $A\Sigma + \Sigma A^T + \Omega B = 0$ 

- 1. For copy # as low as 10, LNA agrees with Gillespie (by KL measure).
- 2. We can go to higher order in  $1/\Omega$ .
- 3. Contrary to Baras et al, 1996, LNA is sound if A = A(A)t steady state:
- 4. For eig(S) of very different sizes, need to adiabatically integrate out the fast modes.
- $P(g \mid c) = N[g(c), \Sigma]$

# Model + parameters: details

$$0 = \frac{dg_i}{dt} = -Rg_i + a_0 + \alpha \left(g_j, s_j\right)$$
  
Inhibition:  $\alpha(\phi_j, s_j) = a \frac{K^n}{K^n + (\phi_j/s_j)^n}$ 

Excitation: 
$$\alpha(\phi_j, s_j) = a \frac{(\phi_j/s_j)^n}{K^n + (\phi_j/s_j)^n}$$

 $s_j = \begin{cases} 1, & \text{signal } + \\ \text{optimized, signal } - \end{cases}$  equivalent to rescaling K



- $g_i$  determ. conc. of i<sup>th</sup> TF
- R protein decay rate
- K dissociation constant
- *n* Hill coefficient (set to 2)
- *a* range of promoter
- $a_0$  leak of promoter
- *s* effect of signal molecule

#### Up to 22 parameters

Example: two distinct steady states with Gaussian noise; P(each state | C=c)=const; no stochastic stability analysis.

However: we can consider cycles  $(g \rightarrow \infty \text{ is never a solution, so at } t \rightarrow \infty$ , we either have cycles or fixed points, and we have not observed chaos).

## Numerics: Increasing MI



decreasing the reporter variance to the Poisson limit (low pass filtering upstream noise by slow reporter); variance of the other species may be sub-Poisson (negative feedback)



## Achieving 2 bits (T, #)



# Adaptation makes any topology functional

| Number | Topology                                                                                                  | $\max I(X, Y)$ | max $I(X, Y)$ - $\lambda_N N$ - $\lambda_T T$ |
|--------|-----------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------|
| 1      | 0-0-0                                                                                                     | 1.9913         | 1.5698                                        |
| 2      | A B C−G                                                                                                   | 1.9992         | 1.9016                                        |
|        | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>(                           |                |                                               |
| 3      | Br                                                                                                        | 1.9915         | 0.9745                                        |
| 4      |                                                                                                           | 1.9950         | 0.9842                                        |
| 5      | Q B G-G                                                                                                   | 1.9998         | 0.9740                                        |
|        | A C IG                                                                                                    |                |                                               |
| 6      | Br                                                                                                        | 1.9934         | 0.9894                                        |
| 7      | € <u></u> | 1.9985         | 0.9809                                        |
|        | A C IO                                                                                                    |                |                                               |
| 8      | B                                                                                                         | 2.000          | 1.8811                                        |
| 9      | A B C G                                                                                                   | 1.9972         | 1.8228                                        |
|        | A C IC                                                                                                    |                |                                               |
| 10     | · .                                                                                                       | 1.9913         | 0.9649                                        |
| 11     |                                                                                                           | 2.0000         | 0.9890                                        |
| 12     | O O O                                                                                                     | 2.0000         | 0.9902                                        |

| Number | Topology                                                                                         | $\max I(X, Y)$ | max $I(X, Y)$ - $\lambda_N N$ - $\lambda_T T$ |
|--------|--------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------|
|        | 0000                                                                                             |                |                                               |
| 13     | B                                                                                                | 1.9983         | 0.9860                                        |
| 14     | ®®®                                                                                              | 1.9999         | 1.7752                                        |
| 15     |                                                                                                  | 1.9994         | 1.4309                                        |
| 16     |                                                                                                  | 1.9995         | 1.8979                                        |
|        | A C IG                                                                                           |                |                                               |
| 17     | · ® • /                                                                                          | 1.9952         | 0.9704                                        |
| 18     | € B G−6                                                                                          | 1.9996         | 1.4079                                        |
| 19     |                                                                                                  | 1.9978         | 1.8581                                        |
| 20     | Q C C                                                                                            | 2.0000         | 0.9563                                        |
| 21     |                                                                                                  | 1.9955         | 0.9900                                        |
|        | 0<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>( |                |                                               |
| 22     | B                                                                                                | 2.0000         | 0.8232                                        |
| 23     | A B C−G                                                                                          | 2.0000         | 0.9871                                        |
| 24     | (B)<br>(B)<br>(C)<br>(G)<br>(G)<br>(G)<br>(G)<br>(G)<br>(G)<br>(G)<br>(G)<br>(G)<br>(G           | 1.9912         | 1.1193                                        |

 $\langle N \rangle \leq 100, T \leq \text{hours}$ 

# More bits? Other P(c)? More states of c?

Since G has no feedback, minimum noise for fixed  $N_G$  is Poisson.



### Insensitivity to parameters

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2



(e.g., *I* for topology 1)

- Almost 10-fold parameter changes may still lead to *I*>1.4 bits (holds for some other topologies).
- 2. High *I* is generic! No finetuning.

## **Multiple functions**



#### Function:

| input | reporter rank | reporter rank |
|-------|---------------|---------------|
| mput  | реак і        | peak z        |
| 00    | 2             | 2             |
| 01    | 1             | 1             |
| 10    | 4             | 3             |
| 11    | 3             | 4             |

# Summary of part 2

- Generically, can send many bits through simple networks (cross-talk?)
- Noise in adapted circuits is not the reason for low predictability
- Circuits can adapt (e.g., after a knock-out) to perform a function reliably
- Circuits can perform many functions (without "hard" changes)
- "Soft" parameters must be known to specify networks, or must focus on functions

### The work was done by...

- Post-translational regulation: Kai Wang, Adam Margolin, Andrea Califano et al., Katia Basso, Riccardo Dala-Favera et al., LANL comp-bio team
- Information processing by circuits: Etay Ziv, Chris Wiggins