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The technological revolution in biological research, and in

particular the use of molecular fluorescent labels, has allowed

investigation of heterogeneity of cellular responses to stimuli on

the single cell level. Computational, theoretical, and synthetic

biology advances have allowed predicting and manipulating

this heterogeneity with an exquisite precision previously

reserved only for physical sciences. Functionally, this cell-to-

cell variability can compromise cellular responses to

environmental signals, and it can also enlarge the repertoire of

possible cellular responses and hence increase the adaptive

nature of cellular behaviors. And yet quantification of the

functional importance of this response heterogeneity remained

elusive. Recently the mathematical language of information

theory has been proposed to address this problem. This

opinion reviews the recent advances and discusses the

broader implications of using information-theoretic tools to

characterize heterogeneity of cellular behaviors.
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Biological systems, including cells and tissues, are extre-

mely diverse in nature. This diversity can frequently be

perplexing, particularly if displayed by cells of the same

type and carrying identical genomes. Indeed, if the

genetic composition of a cell of a certain type fully defines

its phenotypic responses to a specific environmental

input, then cells of the same type would be expected

to show similar responses to identical stimuli. However,

this is rarely the case. For most cells, there is an easily

observable variability in their responses, even if the cells

are clonal in origin. This variability is sometimes referred

to as biological noise. The sources, the analysis, and

biological, medical, and biotechnology implications of

this noise are the focus of this perspective. We posit that
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noise should not only be acknowledged, but measured

and predicted with quantitative accuracy, and that the

mathematical language of information theory is the right

framework for characterization of noisy responses of cel-

lular systems.

Emergence of biological noise in single cell
behavior
The recent technological revolution in biological research

brought with it a diverse array of methods allowing one to

have a high-resolution view of single cell behaviors. In

addition to the analysis of cellular phenotypes, such as cell

division, migration or death, these methods allow detec-

tion of the biochemical events underlying cellular

decision-making leading to various defined phenotypic

outcomes [1]. A particularly important technique has

been the use of molecular fluorescent labels [2]. Such

labels allow tracking individual molecules in both live and

fixed cells, revealing time dependent molecular acti-

vation and localization patterns. Over time, use of these

tools revealed that both a given cell behavior and the

underlying biochemical processes are highly variable in a

way not immediately interpretable [3–6]. This variability

can often be traced to an observation that chemical

reactions in cells occur with very low numbers of mol-

ecules (one copy of DNA, tens of copies of regulatory

proteins in bacteria [7], and so on [8]). Such reactions

result in unpredictably fluctuating numbers of molecules

in individual cells or their compartments, and thus in

different effective chemical concentrations across cellular

populations. This variability is similar to the famed shot

noise in electronic devices [9]. Thus it is not surprising

that understanding this cellular variability has required

new theories and approaches that have their roots in

physical sciences. These new ideas have come in two

favors: mathematical and computational tools for efficient

treatment of noise in biochemical processes, and a series

of novel experimental techniques focused on measuring

the noise.

The computational advances in understanding cellular

noise started with the Stochastic Simulation Algorithm,

also known under the name of its developer, Dan Gille-

spie [10,11]. This algorithm captures the stochasticity of

biochemical reactions, generating statistically accurate

random time courses of concentrations of reacting chemi-

cals. Its simplicity was in stark contrast to generally

intractable analytical approaches that had been used

traditionally [9]. Various extensions of the algorithm

followed, making it computationally more efficient under

different conditions (see e.g., [11–14]), and applicable to

very large biochemical reaction networks [15]. At the
www.sciencedirect.com
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same time, mathematical advances have resulted in

powerful analytical techniques for modeling noise [16–
18]. Similarly, the typically linear nature of the dynamics

of probabilities of molecule numbers gave rise to efficient

numerical approaches [19].

All of these methods are now mature enough to make

accurate predictions within their domains of applicability.

However, their assumptions often fail in the context of

real living cells. For example, the assumption of well-

mixed chemical reactions may not hold for physically

structured cells [20], and the assumption of reactions

happening as independent, almost instantaneous events

may fail for enzymes with complex kinetics [21]. Further,

such stochastic modeling is data hungry — generally,

predictions are sensitive to values of many kinetic

parameters, which must be inferred from data. Thus some

recent computational developments have focused on

identifying ‘essential’ features of stochastic dynamics

and building their coarse-grained yet accurate models

[22–24].

The experimental analysis of the noise in cellular

responses has focused primarily on diversity in expres-

sion of individual genes, and often, in particular, on the

relative contributions of so-called intrinsic and extrinsic
noise components [25]. More specifically, careful intro-

duction of two different fluorescent labels to track the

transcription of a gene of choice decomposes the expres-

sion variability into components co-variable or indepen-

dent between the two labels [4,26]. The co-varying

component reports on the cell–cell variability that has

common effects on expression of many genes. The

independent variability of the labels corresponds to

the intrinsic stochasticity in expression of specific genes

of interest. Although one component may dominate the

other under different circumstances, or for distinct

genes or cell types, a very important result of this

analysis is that the noise can be complex and multi-

factorial in its origins.

More complex experimental designs have suggested that

noise can accumulate within gene regulation cascades, in

which products of gene expression reactions are them-

selves regulators that can control reactions [27,28]. Pro-

ducts in such chains may feed back and modulate the

activity of the earlier biochemical species, forming net-

works that endow cellular noise with complex and yet not

fully understood statistical properties. Here gene expres-

sion noise may produce qualitatively novel behaviors,

such as switching among multiple phenotypic states or

transient activation [7,29–32]. Importantly, the developed

computational methods can predict the mean responses

and the fluctuations for these relatively complex networks

[33,34,35�]. Some examples of noise analysis in live cells

are described in excellent recent reviews, including

[1,6,36,37].
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In summary, intrinsic variability of cell responses is a

pervasive characteristic of single cell behavior. It now can

be measured, modeled, and sometimes manipulated with

an exquisite precision previously reserved only for

physical sciences. And yet it is not obvious how to

quantify the functional importance of the observed

cell-to-cell variability. Does the variability compromise

certain responses by a cell to signals from the environ-

ment, and hence is detrimental to the cell’s function? Or

might this variability be embraced by the cells because it

enlarges the repertoire of possible responses and hence

assist a group of cells in increasing the adaptive nature of

their behavior [36]? These questions are particularly

important in the context of the interests encompassed

by modern biotechnology. Indeed, can diversity of cell

responses to the specific drug compromise its effects?

Given the cellular noise, how robust would the perform-

ance of new synthetically engineered organisms be? We

discuss these considerations next.

The dose response and implications of
biological noise
Diversity of cellular states and thus cellular responses to

extrinsic signals suggests that the overwhelmingly deter-

ministic view of biological systems needs to undergo a

dramatic change. This paradigm shift is not unlike the

shift from the determinism of classical physics to the

essential uncertainty of quantum mechanics. Inevitably,

such tectonic shifts are fraught with initial doubt and

hesitance, but can also bring about a completely new set

of research questions, while shedding light on many

important unresolved problems. The ostensibly simple

and common dose response assay can be the case in point.

The common interpretation of a typical dose response of a

biochemical reaction is that a graded increase in abun-

dance of an active compound (enzyme, substrate, inhibi-

tor, etc.) leads to a graded change in the output of the

reaction. This view persists from college textbooks, and it

is reinforced daily by typical biochemical assays, in-

cluding those performed in biotechnology and pharma-

ceutical companies. Such essays suggest saturating,

possibly non-linear, sometimes bimodal, but mostly very

smooth input–output relationships. These imply that a

small change in the input can be sensed and converted

into a small change in the output over wide ranges of both.

Thus many (perhaps infinitely many) distinct doses can

be accurately converted into equally many distinct

response levels. Conversely, by observing a response,

one of the many distinct doses can be inferred. An

alternative picture is also common, especially when ana-

lyzing emergence of distinct cellular phenotypes. Here

the dose–response curve is discontinuous, and sometimes

even hysteretic [7,38,39�]. However, a change of the dose

across a certain threshold turns a gene ‘on’ or ‘off’ in a

precise, deterministic fashion reminiscent of digital com-

puters. In both pictures, the level of precision paints
Current Opinion in Biotechnology 2014, 28:156–164
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chemical reactions as versatile and predictable devices

that can be controlled, for example, by various drugs with

a considerable certainty.

Such high fidelity view of biochemistry not only in the

test tube, but also in live cells, can increase one’s confi-

dence in the effects of drugs within a cell population and,

ultimately, in an organism. However, frequently this view

is misleading. Indeed, most of the ‘classical’ biochemical

assays rely on large amounts of material, and thus thou-

sands or millions of individual cells. Their results

represent the average view of a cell population response,

hiding the details of the individual cell behavior. Can the

existence of this individuality, the biological noise,

change this interpretation of the dose response curve

for biochemical processes?

The average, population-level response to a change in the

cellular environment is an incomplete description of a

population behavior. In the worst case, when individual

cells respond in a bimodal fashion (i.e., have clear ‘on’ and

‘off’ response states), the mean population response may

not be representative of any cell in the population [7]

(similar caution has been sounded in other branches of

biology, see e.g., [40]). However, even in the best case

when the mean population response is representative of a

typical individual response, a more statistically informa-

tive view depends on additional population character-

istics, such as the response variance. Indeed, population

responses with different degrees of variance can still have

the same average values. However, a higher variance

implies the existence of responses that can be substan-

tially higher or lower than the average. Thus some cells

might show a very high response, and others virtually no

response at all when faced with the same concentration of
Figure 1

input dose

m
ea

su
re

d 
re

sp
on

se

1

4

2

5

3
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error bars, the dose response provides a lot less information than would be e

and 3 or 3 and 4 overlap. Thus, for example, observing the response near th

caused it, and all doses between 2 and 4 are possible (green shaded areas).
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similar systems. (Right) Inability to infer the dose that has led to the response
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a drug or a growth factor. Overall, predictability of a

response to a signal of any given cell within a population

decreases as the population variability goes up, see

Figure 1 for an illustration.

The distinction between such low and high noise situ-

ations may be extremely biological significant. For

instance, if a drug is designed to target cells that can

quickly proliferate, a high diversity of cell responses will

leave some relatively unresponsive cells unscathed. This

will select for these ‘drug-resistant’ cells and thus may

decrease the sensitivity to the follow-up treatments.

Antibiotic persistence [38,39,41–44] and cancer stem cells

[45] are examples of such phenomena.

Limitations on predictability of responses of individual

cells due to biological noise demand reassessment of the

idea of potentially infinite sensitivity of a generic dose

response. Indeed, the inability to predict response of a

single cell means that it is also impossible to infer which

dose was used to stimulate a given cell from simply

observing its response. This raises the important ques-

tion of whether the response noise can effectively ‘drown

out’ the input signal in the biological signaling. To

illustrate this idea one can resort to the familiar concept

of error bars, see again Figure 1. The rule of thumb is that

if two data points have substantially overlapping error

bars (designating, for example, the 95% confidence inter-

vals), then the difference between these two data points

is not statistically significant. In the worst case scenario,

all data points within the dose response can have over-

lapping error bars, making any dose dependence

suggested by the mean behavior statistically insignifi-

cant. Suppose, however, that the extreme levels of

response (the lowest and the highest response values)
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are statistically distinguishable. This implies that at least

two doses can be distinguished no matter which cells in

the lowest and highest response ranges are selected. But

can three or more doses be distinguished as well? This

question cannot be easily addressed for cases with high

levels of noise, that is, for data with large enough error

bars. Clearly, one no longer can expect accurate sensing

of a great number of different doses, as would be

suggested by average responses. However, it is also not

immediately clear whether the number of distinguishable

doses is, say 2, 4, or perhaps 3.5. To answer this question,

one needs a specifically designed mathematical approach.

Fortunately, the appropriate language and the corre-

sponding analysis methods exist and have been used with

a great success in a variety of fields, from communication

theory, to physics, and to neuroscience. This language is

information theory.

Quantifying biological noise with information
theory
Information theory has been developed originally by

Shannon to quantify communication through a noisy

communication channel [46]. One of its fundamental

results is that reliable communication over a noisy chan-

nel is possible if the amount of data to be transmitted is

below a certain channel-dependent threshold [47,48].

More recent developments have extended the formalism

to communications among a complex network of agents

[49], but large parts of this theory are still a work in

progress [50,51]. The questions addressed by information

theory are similar to those raised above in our analysis of

the dose response: what, or how much, can be said reliably

about the signal(s) when observing a response(s) to them?

An attractive aspect of the mathematical apparatus under-

lying information theory is that it is applicable regardless

of the nature of the signal, of the medium transmitting it,

or of the communication noise. This makes the language

of Shannon’s information theory immediately useable for

a quantitative analysis of biological signal transduction.

Shannon’s theory is intrinsically probabilistic, and the

amount of communicated information is not a function

of a specific pair of dose–response values, but rather it is

an averaged quantity that depends on the probability of

seeing any such random pair. The fundamental quantity

in Shannon’s theory is entropy, typically denoted S or H,

which measures uncertainty in one’s knowledge of a value

of a variable [46]. It is measured in bits, the unit familiar to

all of us in the digital age. One bit of uncertainty means

that the variable can be completely specified by answer-

ing a single binary (‘yes’ or ‘no’) question. A measurement

may not specify a variable of interest completely. For

example, observing a response may still leave some

uncertainty about the dose that has led to it. Then the

amount of information that the response communicates

about the dose, I[r ! d], is the difference of the a priori
dose entropy and its (averaged) entropy after observing
www.sciencedirect.com 
the response. Interestingly, the law of multiplication of

probabilities ensures that I[r ! d] = I[d ! r]. Thus the

information is mutual [47], see Figure 1. This agrees with

our observation that the inability to fully infer the dose

from the response is equivalent to the inability to predict

the response to the dose.

Mutual information depends on means and variances of

distributions of cellular responses, but only because both

can affect one’s ability to infer the dose from the

response. It can be calculated for any kind of variables,

discrete, continuous, and multidimensional. Thus mutual

information is a good candidate for a universal metric to

characterize fidelity of biological communication in the

presence of noise. Not surprisingly, it has been used

widely in biology, achieving the largest impact in neuro-

physiology [52]. In molecular and cellular biology, infor-

mation-theoretic approaches are still relatively rare. And

yet they have been employed already to study processes

as diverse as gene regulation, development, and protein

signaling, both experimentally and computationally [53–
55,56��,57��,58�,59�]. A good survey is [60].

Wider acceptance of mutual information for analysis of

biological signaling is hindered by the fact that most

practitioners have little intuitive understanding of how

to interpret its values. For example, different authors

measure mutual information of about 1 bit (between

�0.5 and �2 bits) in a variety of cellular systems

[54,56��,57��], but it is not immediately clear what this

means. In fact, the interpretation is straightforward: a

single bit allows to distinguish between two alternative

possibilities. In the context of a dose response, if all doses

are a priori equally likely, then 1 bit of information could

mean that half of all dose values could not have caused a

measured response. For example, with 1 bit, the presence

or absence of a stimulant or drug can be distinguished

with high fidelity from the response. More generally, a bit

means that a priori uncertainty about the dose value is

decreased in half, on average, following an observation of

a response. If the number of bits is higher, the response

resolution is exponentially greater. Three bits signify

uncertainty reduction by a factor of 23 = 8, or roughly

down to one out of eight distinct levels of dose response; 4

bits correspond to 24 = 16, levels, and so on, approaching

infinite information for a perfect resolution of a one-to-

one, deterministic dose–response. Fractional values of

information are similarly interpretable: for example, infor-

mation of 1.7 bits means that the response reduces the a
priori uncertainly about the dose by 21.7 � 3.25, times.

Thus in the simplest case, only about �1/3.25 of a priori
possible dose values could have led to an observed

response.

The meaning of 1 bit is further revealed by noticing that

the information between two normally distributed vari-

ables is I = � (1/2)log2(1 � R2), where R2 is the usual
Current Opinion in Biotechnology 2014, 28:156–164
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coefficient of determination (see e.g., [61�]). Thus, gener-

ally, mutual information can be viewed as a generalization

of the coefficient of determination for nonlinear variable

dependencies, where mutual information of 1, 2, 3, and 4

bits corresponds to the same amount of statistical depen-

dence as is shared by normally distributed and linearly

related variables with R2 of 0.750, 0.938, 0.984, and 0.996,

respectively. Thus on the one hand, the information of 1

bit is quite small since it allows to distinguish only two

doses using response values. However, on the other hand,

a single bit corresponds to an effective R2 = 0.750, which

is larger than resolution of typical biochemical exper-

iments. This observation immediately suggests that

measuring large information values requires experiments

with physics-level precision, such as fluorescence tracking

described earlier [56��]. Further, since information mea-

sures all dependences in data, it requires a lot larger data

sets to be estimated reliably compared to simpler, linear

measures of dependency [62–69], which makes exper-

iments even harder.

Such non-intuitive, exotic scaling of information values,

and the difficulty in measuring them, make one ponder if

characterizing the fidelity of a dose response in bits may

be mathematically elegant, but ultimately not very use-

ful. To disperse this concern, we now explore what using

the mutual information may imply for our view of the

noisy cellular processes.

Implications of measuring biological noise in
bits
As noted above, in spite of sophisticated ways to measure

cellular noise, the functional meaning of a specific noise

magnitude in a given biological process is frequently

unclear. Thus an important implication of using mutual
Figure 2
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information is that it provides such an explicit interpret-
ation: noise limits the ability of the input to control the

response of a system to the degree specified by the

number of bits. Roughly speaking, information is the

logarithm of the number of distinct, input-dependent

states in the response repertoire of the cells. Conversely,

the signal passing through a biochemical network is

compromised by the noise, and the information is the

number of distinguishable signal levels sensed by the cell.

Changes in the information processing characteristics of a

particular signaling network often signal a disease state.

For instance, normal and cancer cells often have different

responses to signaling molecules, such as growth factors,

or to drugs. In fact, diseases such as cancer, which result

from misregulation of cellular functions, can be inter-

preted as information diseases: a cancerous cell that

proliferates irrespective of the concentration of an exter-

nal growth factor transmits no information through the

respective signaling pathway since the response (prolifer-

ation) is not informative of the signal (growth factor

concentration). However, such defects in information-

processing capabilities may be of different kinds. For

example, average dose responses may be the same, but

the cell may differ greatly in the variability of the cellular

responses (cf. Figure 2). Alternatively, the average

response characteristics, such as its dynamic range, or

the threshold of sensitivity to the signal, might change in

cancer versus normal cells without affecting the response

noise levels. Traditional ways of quantifying properties of

biochemical signaling systems make it hard to compare

these cases in the same language. Indeed, viewing just the

dose response curves, we cannot state if a twofold increase

in the noise level, twofold decrease in the dynamics

range, or a twofold change in the activation threshold
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Figure 3
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The mean and the error bars of the dose response are insufficient to characterize the information transduction capacity of the system, and the

distribution of possible doses is also needed. (Left) Here the distribution of doses is very narrow (light red bell-shaped curve). Thus all possible

responses are consistent with just one dose 5. Since no doses can be reliably distinguished, the information transduced in this system is close to zero.

(Right) Here the distribution of observable doses spans a larger range, and the induced responses can lead to identifying doses anywhere between

doses 2 and 5. Information in this system is much larger than in the left panel, even though the dose response is the same.
will have a larger effect on the signal transduction. Infor-

mation-theoretic characterization of cellular signaling

resolves this problem in a straightforward way.

Another important implication of using information to

characterize noisy cellular signaling is that it explicitly

forces us to consider distributions of signals and responses.
Consider, for example, a typical saturating dose response

with some dose-dependent noise encapsulated in exper-

imental error bars, Figure 3. The information transmitted

by this signaling system will depend on the distribution of

possible doses [47]. If all possible doses correspond to the

saturated mean response, or to responses with very large

variances, then the information is low. In contrast, if the a
priori probable doses span the entire dynamic range of the

system, and probability of doses with low response var-

iance is high, then the information is high as well, cf.

Figure 3. Thus one cannot say whether noise is function-

ally important without saying first which doses the system

is likely to experience. Correspondingly, in information-

theoretic analysis, one often measures the natural distri-

bution of doses and then controls it accurately exper-

imentally (see e.g., [66,70–72] for some neurophysiology

examples). Alternatively, one can ask which dose distri-

bution would maximize information transmission through

a given biological system [54,56��]. This puts the maxi-

mum limit on the amount of information that can be

transmitted and also identifies which input values can

deliver the most effect in terms of the response sensi-

tivity.

One can take this analysis further and study which aspects

of the input beyond its dose, such as the rate of its change

or its duration, can affect the response the most
www.sciencedirect.com 
[73,74,75�]. A greater amount of information contained

in certain features of inputs suggests that these features

can yield a greater degree of manipulation of the bio-

chemical system, and are less likely to be affected by the

noise. In the same vein, it is possible that a greater

information could be delivered by multiple simultaneous

signals, each with its own response and noise character-

istics. Indeed, typical signaling systems participate in a

variety of cellular decision-making processes, with

multiple distinct response phenotypes. And yet exper-

imental values of information of about 1 bit [56��] seem to

suggest that only about two possible responses should be

reliably distinguished. Thus richness of cellular behaviors

requires either collective cellular decision-making or use of

complex, dynamic, combinatorial inputs [56��,57��,76,77��],
which can be identified with information-theoretic

analysis. Even more interestingly, the type of the input

yielding the best control of the cell population can

dramatically change as a function of a disease state,

suggesting new protocols that could maximize effects

of drugs through more dynamically complex and combi-

natorial inputs.

Information-centric view of biological signaling affords an

easier interpretation of data and identifiability of func-

tionally important components. It is thus a natural frame-

work for quantification of signaling in noisy biochemical

networks. However, the approach allows a lot more.

Indeed, high-fidelity information transmission allows

making informed decisions, and is, therefore, a key con-

tribution to an organism’s fitness, likely to be optimized

by evolution. Indeed, physiological adaptation optimizes

transmitted information [52,61,70], signaling that various

organisms ‘care’ about the transmitted bits. Even the very
Current Opinion in Biotechnology 2014, 28:156–164
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topology of cellular regulatory networks may be opti-

mized to allow more accurate information transmission

[78]. Correspondingly, there is a series of theoretical

arguments (most of which are not yet verified experimen-

tally) that directly limit an organism’s fitness by the

amount of information the organism accumulates about

its environment [42,79�,80]. This realization suggests that

the next few years of research may show that information-

theoretic approach is not one of the many possible, but

rather the only natural framework for dealing with the single

cell resolution analysis and the associated cell-cell varia-

bility in biochemical signaling.
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