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Abstract

Learning of a smooth but nonparametric probability densitycan be reg-
ularized using methods of Quantum Field Theory. We implement a field
theoretic prior numerically, test its efficacy, and show that the free pa-
rameter of the theory (‘smoothness scale’) can be determined self con-
sistently by the data; this forms an infinite dimensional generalization of
the MDL principle. Finally, we study the implications of one’s choice
of the prior and the parameterization and conclude that the smoothness
scale determination makes density estimation very weakly sensitive to
the choice of the prior, and that even wrong choices can be advantageous
for small data sets.

One of the central problems in learning is to balance ‘goodness of fit’ criteria against the
complexity of models. An important development in the Bayesian approach was thus the
realization that there does not need to be any extra penalty for model complexity: if we
compute the total probability that data are generated by a model, there is a factor from the
volume in parameter space—the ‘Occam factor’—that discriminates against models with
more parameters [1, 2]. This works remarkably well for systems with a finite number of
parameters and creates a complexity ‘razor’ (after ‘Occam’s razor’) that is almost equiv-
alent to the celebrated Minimal Description Length (MDL) principle [3]. In addition, if
the a priori distributions involved are strictly Gaussian,the ideas have also been proven to
apply to some infinite–dimensional (nonparametric) problems [4]. It is not clear, however,
what happens if we leave the finite dimensional setting to consider nonparametric prob-
lems which are not Gaussian, such as the estimation of a smooth probability density. A
possible route to progress on the nonparametric problem wasopened by noticing [5] that
a Bayesian prior for density estimation is equivalent to a quantum field theory (QFT). In
particular, there are field theoretic methods for computingthe infinite dimensional analog
of the Occam factor, at least asymptotically for large numbers of examples. These obser-
vations have led to a number of papers [6, 7, 8, 9] exploring alternative formulations and
their implications for the speed of learning. Here we returnto the original formulation
of Ref. [5] and use numerical methods to address some of the questions left open by the
analytic work [10]: What is the result of balancing the infinite dimensional Occam factor
against the goodness of fit? Is the QFT inference optimal in using all of the information
relevant for learning [11]? What happens if our learning problem is strongly atypical of the
prior distribution?

Following Ref. [5], if
�

i. i. d. samples��� �� 	 
 � � � � � � are observed, then the probability



that a particular density� �� � gave rise to these data is given by� �� �� � ���� �� 
 � �� �� �� ���	 � � ��� �
 ��� �� ��� �� �� �� � ��	 � � �� � � � (1)

where
� �� �� �� encodes our a priori expectations of� . Specifying this prior on a space of

functions defines a QFT, and the optimal least square estimator is then��� �� ��� � �� 

�� �� �� ��� �� ��� � � � �� ��� �� ����� ��� �� ��� � � � �� ��� �� ��� � (2)

where
�� � �� ��� means averaging with respect to the prior. Since� �� � � �, it is convenient

to define an unconstrained field� �� �, � �� � � ����� � ��� ��� �� ��. Other definitions are
also possible [6], but we think that most of our results do notdepend on this choice.

The next step is to select a prior that regularizes the infinite number of degrees of freedom
and allows learning. We want the prior� ��� to make sense as a continuous theory, inde-
pendent of discretization of� on small scales. We also require that when we estimate the
distribution� �� � the answer must be everywhere finite. These conditions implythat our
field theory must be convergent at small length scales. For� in one dimension, a minimal
choice is� �� �� �� 
 �� ���  � ��! "�# $ �� %& ! �&�! '

�( ) * ��� $ �� �"+ �,� � �- � (3)

where. / ��#, 0 is the normalization constant, and the

)
-function enforces normalization

of � . We refer to� and. as thesmoothness scaleand theexponent, respectively.

In [5] this theory was solved for large
�

and. 
 �:� �1
�	 � � �� � �� ��� 2 ���� ��� ��3�4 ��56 �� � 7 ��� ��� � (4)3�4 
 $ �� 8�# �&,�56 �� 9 �# : � �"+;<��� = 9 �>?	 � �56 ��? � � (5)

�& �,�56 �� � 9 ��� �"+;< �,� 
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where�56 is the ‘classical’ (maximum likelihood, saddle point) solution. In the effective
action [Eq. (5)], it is the square root term that arises from integrating over fluctuations
around the classical solution (Occam factors). It was shownthat Eq. (4) is nonsingular
even at finite

�
, that the mean value of�56 converges to the negative logarithm of the

target distribution
� �� � very quickly, and that the variance of fluctuations@ �� � � � �� � ��� ABC ��� �� �� falls off asD ��E�� � �� �. Finally, it was speculated that if the actual� is

unknown one may average over it and hope that, much as in Bayesian model selection [2],
the competition between the data and the fluctuations will select the optimal smoothness
scale� F.
At the first glance the theory seems to look almost exactly like a Gaussian Process [4]. This
impression is produced by a Gaussian form of the smoothness penalty in Eq. (3), and by
the fluctuation determinant that plays against the goodnessof fit in the smoothness scale
(model) selection. However, both similarities are incomplete. The Gaussian penalty in
the prior is amended by the normalization constraint, whichgives rise to the exponential
term in Eq. (6), and violates many familiar results that holdfor Gaussian Processes, the



representer theorem [12] being just one of them. In the semi–classical limit of large
�

,
Gaussianity is restored approximately, but the classical solution is extremely non–trivial,
and the fluctuation determinant is only the leading term of the Occam’s razor, not the com-
plete razor as it is for a Gaussian Process. In addition, it has no data dependence and is thus
remarkably different from the usual determinants arising in the literature.

The algorithm to implement the discussed density estimation procedure numerically is
rather simple. First, to make the problem well posed [10, 11]we confine� to a box� � � � � with periodic boundary conditions. The boundary value problem Eq. (6) is
then solved by a standard ‘relaxation’ (or Newton) method ofiterative improvements to
a guessed solution [13] (the target precision is always��"�). The independent variable
� � �� � �� is discretized in equal steps [��� for Figs. (1.a–2.b), and��� for Figs. (3.a, 3.b)].
We use an equally spaced grid to ensure stability of the method, while small step sizes are
needed since the scale for variation of�56 �� � is [5])

� D E��� � �� � � (7)

which can be rather small for large
�

or small�.
Since the theory is short scale insensitive, we can generaterandom probability densities
chosen from the prior by replacing� with its Fourier series and truncating the latter at some
sufficiently high wavenumber�� [�� 
 ���� for Figs. (1.a–2.b), and���� for Figs. (3.a,
3.b)]. Then Eq. (3) enforces the amplitude of the� ’th mode to be distributed a priori
normally with the standard deviation

�	 

# �
��! "�
� % �#� � '!

� (8)

Coded in such a way, the simulations are extremely computationally intensive. There-
fore, Monte Carlo averagings given here are only over 500 runs, fluctuation determi-
nants are calculated according to Eq. (5), not using numerical path integration, and�56 
 ����� � ��� ���56� is always used as an approximation to��� .
As an example of the algorithm’s performance, Fig. (1.a) shows one particular learning run
for . 
 � and� 
 � �#. We see that singularities and overfitting are absent even for

�
as

low as��. Moreover, the approach of�56 �� � to the actual distribution
� �� � is remarkably

fast: for
� 
 ��, they are similar; for

� 
 ����, very close; for
� 
 ������, one needs

to look carefully to see the difference between the two.

To quantify this similarity of distributions, we compute the Kullback–Leibler divergence�� �� ����� � between the true distribution
� �� � and its estimate��� �� �, and then av-

erage over the realizations of the data points and the true distribution. As discussed in
[11], this learning curve� �� � measures the (average) excess cost incurred in coding the� 9 �’st data point because of the finiteness of the data sample, and thus can be called the
“universal learning curve”. If the inference algorithm uses all of the information contained
in the data that is relevant for learning (“predictive information” [11]), then [5, 9, 11, 10]

� �� � D �� ����
�!� �
�! "� � (9)

We test this prediction against the learning curves in the actual simulations. For. 
 �
and � 
 � �� � � �# � � ���, these are shown on Fig. (1.b). One sees that the exponents are
extremely close to the expected��#, and the ratios of the prefactors are within the errors
from the predicted scalingD ����. All of this means that the proposed algorithm for
finding densities not only works, but is at most a constant factor away from being optimal
in using the predictive information of the sample set.

Next we investigate how one’s choice of the prior influences learning. We first stress that
there is no such thing as awrong prior. If one admits a possibility of it being wrong, then
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Figure 1: (a)�56 found for different
�

at � 
 � �#. (b) � as a function of
�

and �.
The best fits are: for� 
 � ��, � 
 �� ��� � � ����� "� ������ �� ��; for � 
 � �#, � 
�� ��� � � ����� "� ������ ���; for � 
 � ���, � 
 ���	� � � ��	�� "� ���
�� ���.
it does not encode all of the a priori knowledge! It does make sense, however, to ask what
happens if the distribution we are trying to learn is an extreme outlier in the prior� ���.
One way to generate such an example is to choose a typical function from a different prior� � ���, and this is what we mean by ‘learning with a wrong prior.’ If the prior is wrong
in this sense, and learning is described by Eqs. (2–6), then we still expect the asymptotic
behavior, Eq. (9), to hold; only the prefactors of� should change, and those must increase
since there is an obvious advantage in having the right prior; we illustrate this in Figs. (2.a,
2.b).

For Fig. (2.a), both� � ��� and� ��� are given by Eq. (3), but� � has the ‘actual’ smoothness
scale�� 
 � �� � � ���, and for� the ‘learning’ smoothness scale is� 
 � �# (we show the
case�� 
 � 
 � �# again as a reference). The� D ����

behavior is seen unmistakably.
The prefactors are a bit larger (unfortunately, insignificantly) than the corresponding ones
from Fig. (1.b), so we may expect that the ‘right’�, indeed, provides better learning (see
later for a detailed discussion).

Further, Fig. (2.b) illustrates learning when not only�, but also. is ‘wrong’ in the sense
defined above. We illustrate this for.� 
 # � � �� � � �	 � � (remember that only.� / � ��
removes UV divergences). Again, the inverse square root decay of � should be observed,
and this is evident for.� 
 #

. The.� 
 � �� � � �	 � � cases are different: even for
�

as high
as ��� the estimate of the distribution is far from the target, thusthe asymptotic regime is
not reached. This is a crucial observation for our subsequent analysis of the smoothness
scale determination from the data. Remarkably,� (both averaged and in the single runs
shown) is monotonic, so even in the cases ofqualitativelyless smooth distributionsthere
still is no overfitting. On the other hand,� is well above the asymptote for. 
 #

and small�
, which means that initially too many details are expected and wrongfully introduced into

the estimate, but then they are almost immediately (
� D ���) eliminated by the data.

Following the argument suggested in [5], we now view� ���, Eq. (3), as being a part of
some wider model that involves a prior over�. The details of the prior are irrelevant,
however, if

3�4 ���, Eq. (5), has a minimum that becomes more prominent as
�

grows. We
explicitly note that this mechanism isnot tuning of the prior’s parameters, but Bayesian
inference at work:� F emerges in a competition between the smoothness, the data, and the
Occam terms to make

3�4 smaller, and thus thetotal probability of the data is larger. In its



(a) (b)

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Λ

 N

 l
a
=0.2, data and best fit 

 l
a
=0.4, data and best fit 

 l
a
=0.05, data and best fit

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Λ

 N

η
a
=1,  l

a
=0.2, data, best fit  

η
a
=2,  l

a
=0.1, data, best fit  

η
a
=0.8,  l

a
=0.1, data, best fit

η
a
=0.6,  l

a
=0.1, data, one run 

η
a
=0,  l

a
=0.12, data, one run  

Figure 2: (a)� as a function of
�

and ��. Best fits are: for�� 
 � ��, � 
 �� ��	 �� ��� �� "� ��

�� �� ��; for �� 
 � ���, � 
 ����� � � ��	�� "� ������ ����. Learning is always
with � 
 � �#. (b) � as a function of

�
, .� and �� . Best fits: for.� 
 #

, �� 
 � ��,� 
 �� ����� ����� "� ������ �� ��; for .� 
 � ��, �� 
 � ��, � 
 ����	�� ����� "� ������ ����.� 
 � �# for all graphs, but the one with.� 
 �, for which � 
 � ��.
turn, larger probability means shorter total code length.

The data term, on average, is equal to
� �� �� ���56 �, and, for very regular

� �� � (an
implicit assumption in [5]), it is small. Thus only the kinetic and the Occam terms matter,
and� F D � �


� [5]. For less regular distributions
� �� �, this is not true [cf. Fig. (2.b)]. For. 
 �, �56 �� � approximates large-scale features of

� �� � very well, but details at scales
smaller thanD E��� � are averaged out. If

� �� � is taken from the prior, Eq. (3), with
some.� , then these details fall off with the wave number� asD �"!� . Thus the data term
is D � �

�
�"!� �!�"� �� and is not necessarily small. For.� � ��� this dominates the kinetic

term and competes with the fluctuations to set� F D � �!�"��
!� � .� � ��� � (10)

There are two remarkable things about Eq. (10). First, for. � 
 �, � F stabilizes at some
constant value, which we expect to be equal to��. Second, even for. �
 .�, Eqs. (9, 10)
ensure that� scales asD � �
�!� "�

, which is at worst a constant factor away from the best
scaling, Eq. (9), achievable with the ‘right’ prior,. 
 .� . So, by allowing� F to vary with�

we can correctly capture the structure of models that are qualitatively different from our
expectations (. �
 .�) and produce estimates of� that are extremely robust to the choice
of the prior. To our knowledge, this feature has not been noted before in a reference to a
nonparametric problem.

We present simulations relevant to these predictions in Figs. (3.a, 3.b). Unlike on the pre-
vious Figures, the results are not averaged due to extreme computational costs, so all our
further claims have to be taken cautiously. On the other hand, selecting� F in single runs
has some practical advantages: we are able to ensure the bestpossible learning for any
realization of the data. Fig. (3.a) shows single learning runs for various.� and��. In ad-
dition, to keep the Figure readable, we do not show runs with.� 
 � �	 � � �� � ��# � ��� � �,
and.� � � , which is a finitely parameterizable distribution. All of these display a good
agreement with the predicted scalings: Eq. (10) for.� � ���, and� F D � �


� otherwise.
Next we calculate the KL divergence between the target and the estimate at� 
 � F; the
average of this divergence over the samples and the prior is the learning curve [cf. Eq. (9)].
For .� 
 � �� � # we plot the divergencies on Fig. (3.b) side by side with theirfixed � 
 � �#
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Figure 3: (a) Comparison of learning speed for the same data sets with different a priori
assumptions. (b) Smoothness scale selection by the data. The lines that go off the axis for
small

�
symbolize that

3�4 monotonically decreases as� � � .

analogues. Again, the predictions clearly are fulfilled. Note, that for.� �
 . there is a
qualitativeadvantage in using the data induced smoothness scale.

The last four Figures have illustrated some aspects of learning with ‘wrong’ priors. How-
ever, all of our results may be considered as belonging to the‘wrong prior’ class. Indeed,
the actual probability distributions we used were not nonparametric continuous functions
with smoothness constraints, but were composed of�� Fourier modes, thus had

#�� param-
eters. For finite parameterization, asymptotic propertiesof learning usually do not depend
on the priors (cf. [3, 11]), and priorless theories can be considered [14]. In such theories
it would take well over

#�� samples to even start to close down on the actual value of the
parameters, and yet a lot more to get accurate results. However, using the wrong contin-
uous parameterization [� �� �] we were able to obtain good fits for as low as���� samples
[cf. Fig. (1.a)] with the help of the prior Eq. (3). Moreover,learning happened continuously
and monotonically without huge chaotic jumps of overfittingthat necessarily accompany
any brute force parameter estimation method at low

�
. So, for some cases, aseemingly

more complex modelis actuallyeasierto learn!

Thus our claim: when data are scarce and the parameters are abundant, one gains even by
using the regularizing powers of wrong priors. The priors select some large scale features
that are the most important to learn first and fill in the details as more data become available
(see [11] on relation of this to the Structural Risk Minimization theory). If the global
features are dominant (arguably, this is generic), one actually wins in the learning speed
[cf. Figs. (1.b, 2.a, 3.b)]. If, however, small scale details are as important, then one at least
is guaranteed to avoid overfitting [cf. Fig. (2.b)].

One can summarize this in an Occam-like fashion [11]: if two models provide equally good
fits to data,a simpler one should always be used. In particular, the predictive information,
which quantifies complexity [11], and of which� is the derivative, in a QFT model isD � �
�!

, and it isD �� ABC �
in the parametric case. So, for�� / � �
�!

, one should
prefer a ‘wrong’ QFT formulation to the correct finite parameter model. These results are
very much in the spirit of our whole program: not only is the value of � F selected that
simplifies the description of the data, but the continuous parameterization itself serves the
same purpose. This is an unexpectedly neat generalization of the MDL principle [3] to
nonparametric cases.



Summary:The field theoretic approach to density estimation not only regularizes the learn-
ing process but also allows the self-consistent selection of smoothness criteria through an
infinite dimensional version of the Occam factors. We have shown numerically that this
works, even more clearly than was conjectured: for.� � ���, the learning curve truly be-
comes a property of the data, and not of the Bayesian prior! Ifwe can extend these results to
other.� and combine this work with the reparameterization invariant formulation of [7, 8],
this should give a complete theory of Bayesian learning for one dimensional distributions,
and this theory has no arbitrary parameters. In addition, ifthis theory properly treats the
limit . � � � , we should be able to see how the well–studied finite dimensional Occam
factors and the MDL principle arise from a more general nonparametric formulation.
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