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Abstract

Learning of a smooth but nonparametric probability denséty be reg-
ularized using methods of Quantum Field Theory. We impleradield

theoretic prior numerically, test its efficacy, and showt e free pa-
rameter of the theory (‘smoothness scale’) can be detedrsal con-

sistently by the data; this forms an infinite dimensionaleyatization of
the MDL principle. Finally, we study the implications of daehoice

of the prior and the parameterization and conclude thatrh@oghness
scale determination makes density estimation very weakhgitive to

the choice of the prior, and that even wrong choices can barddgeous
for small data sets.

One of the central problems in learning is to balance ‘gosdmé fit' criteria against the
complexity of models. An important development in the Bagrespproach was thus the
realization that there does not need to be any extra peraltpnddel complexity: if we
compute the total probability that data are generated by deinthere is a factor from the
volume in parameter space—the ‘Occam factor'—that discrates against models with
more parameters [1, 2]. This works remarkably well for systavith a finite number of
parameters and creates a complexity ‘razor’ (after ‘Oceaiazor’) that is almost equiv-
alent to the celebrated Minimal Description Length (MDL)ngiple [3]. In addition, if
the a priori distributions involved are strictly Gaussitre ideas have also been proven to
apply to some infinite—dimensional (nonparametric) protg¢4]. It is not clear, however,
what happens if we leave the finite dimensional setting tcsictam nonparametric prob-
lems which are not Gaussian, such as the estimation of a Bnpoobability density. A
possible route to progress on the nonparametric problenoweased by noticing [5] that
a Bayesian prior for density estimation is equivalent to arqum field theory (QFT). In
particular, there are field theoretic methods for computireginfinite dimensional analog
of the Occam factor, at least asymptotically for large nurald examples. These obser-
vations have led to a number of papers [6, 7, 8, 9] exploriteyadtive formulations and
their implications for the speed of learning. Here we retiarithe original formulation
of Ref. [5] and use numerical methods to address some of thstiqus left open by the
analytic work [10]: What is the result of balancing the infindimensional Occam factor
against the goodness of fit? Is the QFT inference optimalimguall of the information
relevant for learning [11]? What happens if our learningypem is strongly atypical of the
prior distribution?

Following Ref. [5], if N i.i.d. sampleqz;},i = 1... N, are observed, then the probability



that a particular densit§) (x) gave rise to these data is given by
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whereP[Q(z)] encodes our a priori expectations@f Specifying this prior on a space of
functions defines a QFT, and the optimal least square estirisaten
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where(.. ,)(0) means averaging with respect to the prior. Si@€e) > 0, it is convenient

to define an unconstrained fiefdz), Q(z) = (1/4) exp[—¢(z)]. Other definitions are
also possible [6], but we think that most of our results dodegend on this choice.
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The next step is to select a prior that regularizes the iefimitmber of degrees of freedom
and allows learning. We want the prift¢] to make sense as a continuous theory, inde-
pendent of discretization af on small scales. We also require that when we estimate the
distribution@Q(z) the answer must be everywhere finite. These conditions ittaltour

field theory must be convergent at small length scalesakorone dimension, a minimal

choice is
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wheren > 1/2, Z is the normalization constant, and #fxunction enforces normalization
of Q. We refer tof andn as thesmoothness scabnd theexponentrespectively.

Plo(z)] = o exp

In [5] this theory was solved for largh¥ andn = 1:
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whereg,; is the ‘classical’ (maximum likelihood, saddle point) sidu. In the effective
action [Eqg. (5)], it is the square root term that arises fronegrating over fluctuations
around the classical solution (Occam factors). It was shthah Eq. (4) is nonsingular
even at finiteNV, that the mean value af.; converges to the negative logarithm of the
target distributionP(z) very quickly, and that the variance of fluctuatiop&e) = ¢(x) —

[— log £y P(x)] falls off as~ 1/4/¢N P(z). Finally, it was speculated that if the actdas
unknown one may average over it and hope that, much as in Baye®del selection [2],
the competition between the data and the fluctuations wiicéehe optimal smoothness
scalel*.

At the first glance the theory seems to look almost exactlydilGaussian Process [4]. This
impression is produced by a Gaussian form of the smoothrasaty in Eq. (3), and by
the fluctuation determinant that plays against the goodogfisin the smoothness scale
(model) selection. However, both similarities are incogt@l The Gaussian penalty in
the prior is amended by the normalization constraint, wigisies rise to the exponential
term in Eq. (6), and violates many familiar results that hioidGaussian Processes, the



representer theorem [12] being just one of them. In the sdassical limit of largeV,
Gaussianity is restored approximately, but the classilaition is extremely non—trivial,
and the fluctuation determinant is only the leading term ef@tcam’s razor, not the com-
plete razor as it is for a Gaussian Process. In additionsihibadata dependence and is thus
remarkably different from the usual determinants arisithe literature.

The algorithm to implement the discussed density estimapimcedure numerically is
rather simple. First, to make the problem well posed [10, i&]confinez to a box
0 < z < L with periodic boundary conditions. The boundary value probEq. (6) is
then solved by a standard ‘relaxation’ (or Newton) methodterfative improvements to
a guessed solution [13] (the target precision is awEys®). The independent variable
z € [0,1] is discretized in equal steps(* for Figs. (1.a—2.b), antl0® for Figs. (3.a, 3.b)].
We use an equally spaced grid to ensure stability of the ndetlibile small step sizes are
needed since the scale for variationfef(z) is [5]

6z ~ \/{/NP(z), ()

which can be rather small for largé or small’.

Since the theory is short scale insensitive, we can geneaattom probability densities
chosen from the prior by replacirgwith its Fourier series and truncating the latter at some
sufficiently high wavenumbek, [k. = 1000 for Figs. (1.a—2.b), and000 for Figs. (3.a,
3.b)]. Then Eg. (3) enforces the amplitude of thith mode to be distributed a priori
normally with the standard deviation
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Coded in such a way, the simulations are extremely comjpuiaity intensive. There-
fore, Monte Carlo averagings given here are only over 503, rdinctuation determi-
nants are calculated according to Eq. (5), not using numlepath integration, and
Qa = (1/4p) exp[—¢e] is always used as an approximatiorQgs.

As an example of the algorithm’s performance, Fig. (1.ay&hone particular learning run
forn = 1 and/ = 0.2. We see that singularities and overfitting are absent evefivfas
low as10. Moreover, the approach 6f. () to the actual distributio®(z) is remarkably
fast: forN = 10, they are similar; fotV = 1000, very close; forN = 100000, one needs
to look carefully to see the difference between the two.

To quantify this similarity of distributions, we computestiKullback-Leibler divergence
Dk1L(P||Qest) between the true distributioR(x) and its estimat®)es;(z), and then av-
erage over the realizations of the data points and the trstellition. As discussed in
[11], this learning curve\(N) measures the (average) excess cost incurred in coding the
N + 1'st data point because of the finiteness of the data samplethais can be called the
“universal learning curve”. If the inference algorithm ss#l of the information contained

in the data that is relevant for learning (“predictive infation” [11]), then [5, 9, 11, 10]

A(N) ~ (L/0)*/>nN1/2n=1 9)

We test this prediction against the learning curves in thaasimulations. Fon = 1
and/ = 0.4, 0.2, 0.05, these are shown on Fig. (1.b). One sees that the exponents ar
extremely close to the expecté@d2, and the ratios of the prefactors are within the errors
from the predicted scaling: 1/v/2. All of this means that the proposed algorithm for
finding densities not only works, but is at most a constartbfaaway from being optimal

in using the predictive information of the sample set.

Next we investigate how one’s choice of the prior influenessring. We first stress that
there is no such thing asverong prior. If one admits a possibility of it being wrong, then
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Figure 1: (a)Q. found for differentNV at£ = 0.2. (b) A as a function ofN and/.
The best fits are: fof = 0.4, A = (0.54 &+ 0.07)N—0-483£0-014. for ¢y — 0.2, A =
(0.83 & 0.08) N ~0-493£0:09; for ¢ = 0.05, A = (1.64 + 0.16) N —0-507+0-09,

it does not encode all of the a priori knowledge! It does makese, however, to ask what
happens if the distribution we are trying to learn is an ereeoutlier in the priorP[¢].
One way to generate such an example is to choose a typicaldoritom a different prior
P'[¢], and this is what we mean by ‘learning with a wrong prior.’ hetprior is wrong

in this sense, and learning is described by Eqgs. (2—-6), theestill expect the asymptotic
behavior, Eq. (9), to hold; only the prefactorsf/oEhould change, and those must increase
since there is an obvious advantage in having the right;psieiillustrate this in Figs. (2.a,
2.b).

For Fig. (2.a), bottP'[#] andP[¢] are given by Eq. (3), bu®’ has the ‘actual’ smoothness
scalel, = 0.4, 0.05, and forP the ‘learning’ smoothness scaleds= 0.2 (we show the
casel, = £ = 0.2 again as a reference). The~ 1/+/N behavior is seen unmistakably.
The prefactors are a bit larger (unfortunately, insignifibg than the corresponding ones
from Fig. (1.b), so we may expect that the ‘riglif'indeed, provides better learning (see
later for a detailed discussion).

Further, Fig. (2.b) illustrates learning when not o#\but alson is ‘wrong’ in the sense
defined above. We illustrate this fg, = 2, 0.8, 0.6, 0 (remember that only, > 0.5
removes UV divergences). Again, the inverse square roaydefA should be observed,
and this is evident fon, = 2. Then, = 0.8,0.6,0 cases are different: even fdf as high
as10° the estimate of the distribution is far from the target, tthesasymptotic regime is
not reached. This is a crucial observation for our subsetgareaiysis of the smoothness
scale determination from the data. Remarkaldl\{(poth averaged and in the single runs
shown) is monotonic, so even in the casegjadlitativelyless smooth distributiorthere
still is no overfitting On the other handy is well above the asymptote fgr= 2 and small
N, which means that initially too many details are expectatharongfully introduced into
the estimate, but then they are almost immediatdly~ 300) eliminated by the data.

Following the argument suggested in [5], we now VviB\], Eq. (3), as being a part of
some wider model that involves a prior ovér The details of the prior are irrelevant,
however, ifSeq (£), Eq. (5), has a minimum that becomes more prominefX ggows. We
explicitly note that this mechanism ot tuning of the prior's parameters, but Bayesian
inference at workZ* emerges in a competition between the smoothness, the ddttha
Occam terms to makg&.qg smaller, and thus thiatal probability of the data is larger. In its
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Figure 2: (a)A as a function ofN and/,. Best fits are: foX, = 0.4, A = (0.56 +
0.08) N—0-477£0.015 for . = 0.05, A = (1.90 £ 0.16) N —0-502+0.008 | earning is always
with £ = 0.2. (b) A as a function ofN, n, and{,. Best fits: forn, = 2, £, = 0.1,
A = (0.40+0.05) N —0-493+0.013- for . = 0.8, £, = 0.1, A = (1.06+0.08) N —0-335+0.008
£ = 0.2 for all graphs, but the one witlh, = 0, for which/ = 0.1.

turn, larger probability means shorter total code length.

The data term, on average, is equalN@Dky,(P||Qa), and, for very regulaP(z) (an
implicit assumption in [5]), it is small. Thus only the kimetand the Occam terms matter,
and/* ~ N'/3[5]. For less regular distributionB(z), this is not true [cf. Fig. (2.b)]. For
n = 1, Qa(z) approximates large-scale featuresR{fz) very well, but details at scales
smaller than~ /¢/N L are averaged out. IP(x) is taken from the prior, Eq. (3), with
somen,, then these details fall off with the wave numlkeasis~ £~"=. Thus the data term
is ~ N1-5=ma 1205 and is not necessarily small. Fgy < 1.5 this dominates the kinetic
term and competes with the fluctuations to set

¢~ NOaD/ma oy 15, (10)

There are two remarkable things about Eq. (10). Firstpfor= 1, £* stabilizes at some
constant value, which we expect to be equal o Second, even fay # 7,, Egs. (9, 10)
ensure thal scales as- N'/27==1 which is at worst a constant factor away from the best
scaling, Eg. (9), achievable with the ‘right’ prioy,= n,. So, by allowing¢* to vary with

N we can correctly capture the structure of models that arétgtively different from our
expectationsi{ # n,) and produce estimates ¢f that are extremely robust to the choice
of the prior. To our knowledge, this feature has not beenchbtfore in a reference to a
nonparametric problem.

We present simulations relevant to these predictions is.K®ja, 3.b). Unlike on the pre-
vious Figures, the results are not averaged due to extrempuational costs, so all our
further claims have to be taken cautiously. On the other hsgléctingl* in single runs
has some practical advantages: we are able to ensure thpdss#ible learning for any
realization of the data. Fig. (3.a) shows single learnimgsrior various;, and/,. In ad-
dition, to keep the Figure readable, we do not show runs wjth= 0.6,0.7,1.2,1.5, 3,
andn, — oo, which is a finitely parameterizable distribution. All ofetse display a good
agreement with the predicted scalings: Eq. (10yfpr< 1.5, and¢* ~ N'/3 otherwise.
Next we calculate the KL divergence between the target aadckgimate at = £*; the
average of this divergence over the samples and the prioe ieairning curve [cf. Eq. (9)].
Forn, = 0.8, 2 we plot the divergencies on Fig. (3.b) side by side with tfiggd ¢ = 0.2
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Figure 3: (a) Comparison of learning speed for the same dasavgth different a priori
assumptions. (b) Smoothness scale selection by the dagdinBs that go off the axis for
small N symbolize thaiS.¢ monotonically decreases s+ oc.

analogues. Again, the predictions clearly are fulfilled.téJdhat fory, # n thereis a
gualitativeadvantage in using the data induced smoothness scale.

The last four Figures have illustrated some aspects of ilegmith ‘wrong’ priors. How-
ever, all of our results may be considered as belonging toatreng prior’ class. Indeed,
the actual probability distributions we used were not neapeetric continuous functions
with smoothness constraints, but were composéd &burier modes, thus hak,. param-
eters. For finite parameterization, asymptotic propedfdsarning usually do not depend
on the priors (cf. [3, 11]), and priorless theories can beswared [14]. In such theories
it would take well oveRk,. samples to even start to close down on the actual value of the
parameters, and yet a lot more to get accurate results. Hwwéasing the wrong contin-
uous parameterizatiog(z)] we were able to obtain good fits for as low B¥)0 samples
[cf. Fig. (1.a)] with the help of the prior Eq. (3). Moreovirarning happened continuously
and monotonically without huge chaotic jumps of overfittthgt necessarily accompany
any brute force parameter estimation method at MwSo, for some cases,seemingly
more complex modéd actuallyeasierto learn!

Thus our claim: when data are scarce and the parameterswardaati, one gains even by
using the regularizing powers of wrong priors. The priolecesome large scale features
that are the mostimportantto learn first and fill in the detad more data become available
(see [11] on relation of this to the Structural Risk Minintipa theory). If the global
features are dominant (arguably, this is generic), oneadlgtwins in the learning speed
[cf. Figs. (1.b, 2.a, 3.b)]. If, however, small scale detaite as important, then one at least
is guaranteed to avoid overfitting [cf. Fig. (2.b)].

One can summarize this in an Occam-like fashion [11]: if twardeds provide equally good
fits to dataa simpler one should always be uséd particular, the predictive information,
which quantifies complexity [11], and of which is the derivative, in a QFT model is
~ N/27 and it is~ k.log N in the parametric case. So, for > N'/2", one should
prefer a ‘wrong’ QFT formulation to the correct finite paraereanodel. These results are
very much in the spirit of our whole program: not only is thdueaof ¢* selected that
simplifies the description of the data, but the continuousip&terization itself serves the
same purpose. This is an unexpectedly neat generalizattithe DL principle [3] to
nonparametric cases.



SummaryThe field theoretic approach to density estimation not oedytarizes the learn-
ing process but also allows the self-consistent selectiamoothness criteria through an
infinite dimensional version of the Occam factors. We hawashnumerically that this
works, even more clearly than was conjecturedzfpk 1.5, the learning curve truly be-
comes a property of the data, and not of the Bayesian priaré ifan extend these results to
othern, and combine this work with the reparameterization invariarmulation of [7, 8],
this should give a complete theory of Bayesian learning fa dimensional distributions,
and this theory has no arbitrary parameters. In additiothi$f theory properly treats the
limit n, — oo, we should be able to see how the well-studied finite dimea$i®ccam
factors and the MDL principle arise from a more general noapetric formulation.
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