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We describe a computational protocol for the ARACNE algorithm, an information-theoretic method for identifying transcriptional

interactions between gene products using microarray expression profile data. Similar to other algorithms, ARACNE predicts potential

functional associations among genes, or novel functions for uncharacterized genes, by identifying statistical dependencies between

gene products. However, based on biochemical validation, literature searches and DNA binding site enrichment analysis, ARACNE has

also proven effective in identifying bona fide transcriptional targets, even in complex mammalian networks. Thus we envision that

predictions made by ARACNE, especially when supplemented with prior knowledge or additional data sources, can provide appropriate

hypotheses for the further investigation of cellular networks. While the examples in this protocol use only gene expression profile

data, the algorithm’s theoretical basis readily extends to a variety of other high-throughput measurements, such as pathway-specific

or genome-wide proteomics, microRNA and metabolomics data. As these data become readily available, we expect that ARACNE might

prove increasingly useful in elucidating the underlying interaction models. For a microarray data set containing B10,000 probes,

reconstructing the network around a single probe completes in several minutes using a desktop computer with a Pentium 4 processor.

Reconstructing a genome-wide network generally requires a computational cluster, especially if the recommended bootstrapping

procedure is used.

INTRODUCTION
High-throughput technologies have allowed the simultaneous
measurement of the concentrations of thousands of molecular
species in a biological system, such as mRNA1, microRNA2,
proteins3 and metabolites4. As the dynamics of each molecular
species are influenced by the concentration of several other species,
a number of statistical approaches have been developed to infer
functional relationships within large sets of biochemical variables5–9

based on correlations among the available data modalities. In
particular, gene expression profiles, which represent the average
concentrations of mRNA in a cellular population, have emerged
among the most readily available genome-wide measurements for
a variety of organisms.

Computational methods used to infer biochemical interactions
from gene expression profile data hold the promise of elucidating
functional mechanisms underlying cellular processes10, as well as
identifying molecular targets of pharmacological compounds11.
Several different approaches have been applied successfully to
dissect bacterial11 and yeast12 networks; however, a variety of
limitations have impeded their generalization to the inference of
genome-wide networks in higher eukaryotes. These approaches fall
generally into four major categories. Optimization methods6,13,14,
such as Bayesian networks, maximize a scoring function over
alternative network models. Challenges with this approach include
exponential complexity in the local network connectivity necessi-
tating heuristic search procedures, reliance on unrealistic network
models (i.e., directed acyclic graphs) and the need to discretize
expression data for most commonly used methods. Regression
techniques10,11 fit the data to a priori models and are limited to
relatively simple models, because the number of parameters
becomes much larger than the number of experimental constraints
as the network complexity increases. Integrative bioinfor-
matics approaches15 combine data from a number of independent

experimental clues, which are only now starting to become
available for higher eukaryotes. Finally, statistical methods7 rely
on a variety of pairwise gene expression correlation measures, and
are generally subject to exceedingly high false-positive rates for
molecular species that interact indirectly (i.e., via one or more
intermediaries). Furthermore, they suffer from difficulty in defin-
ing a rational basis for choosing statistical significance thresholds,
as pairwise statistical independence cannot be used as the only
criterion in the context of a highly interconnected network.

ARACNE overcomes many limitations of existing algorithms: it
has a low polynomial computational complexity, it uses the full
dynamic range of the data instead of relying on (arbitrary)
discretizations and it does not make assumptions about the under-
lying network topology. These properties have enabled ARACNE to
be successfully applied to a system-wide reconstruction of complex
transcriptional networks in human B cells16. In contrast to many
methods that have not been biochemically validated17, ARACNE’s
predictions have been validated for the MYC protooncogene by
chromatin immunoprecipitation assays (ChIPs), which have shown
that MYC binds in vivo to the regulatory region of 11 out of 12
genes selected among those inferred by the algorithm16. When
further combined with literature analysis, over 50% of the MYC
targets inferred by the algorithm were validated. More recently,
similar results were achieved for other transcription factors (TFs),
including BCL6 (R. Dalla-Favera, unpublished results) and NOTCH1
(A. Ferrando, unpublished results). ARACNE’s performance has also
been studied on the reconstruction of synthetic biochemical net-
works, and it has been shown to significantly outperform other
algorithms in this setting9. Finally, the theoretical limitations of the
algorithm have been characterized to asymptotically reconstruct
networks exactly under certain assumptions9. In particular, ARACNE
has been shown to have a low false-positive rate, which makes it
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appealing in terms of further biochemical validation of its
predictions.

Given the extreme complexity of cellular networks, we do not
expect these results to generalize to all cases. For example, due to
the focus on reducing false positives, ARACNE might miss a
significant number of targets of a TF that is involved in a large
number of feedback or feedforward loops. Additionally, ARACNE
is sensitive to the ranking of the mutual information (MI)
estimates. Thus inhomogeneous noise sources that change the
rankings might lead to reconstruction errors. Furthermore,
ARACNE is not designed to directly reconstruct complex combi-
natorial regulation patterns involving multiple independent TFs,
although it might identify such interactions one TF at a time. For
instance, in the B-cell network16, interactions of a gene with
multiple TFs are frequent, suggesting a cooperative regulation
mechanism. An additional limitation, germane to all microarray
expression profile analysis methods, is that ARACNE relies on the
assumption that the mRNA of a TF is correlated with that of its
targets. This assumption might be violated for many TFs that are
post-transcriptionally regulated, or if the cells under investigation
have not reached equilibrium. Furthermore, as microarray expres-
sion profiles only monitor a subset of the interacting species in
a biochemical network, many transcriptional interactions might be
undetectable.

Due to these limitations, as with any biological assay, predictions
made by ARACNE should be used in conjunction with prior
knowledge and with additional data (such as promoter region
sequence information, ChIP-on-Chip18 and existing interactomes)
to provide a useful tool to biologists attempting to dissect specific
transcriptional pathways. This protocol is thus an attempt to
provide a straightforward guide, so that ARACNE can be readily
used for this purpose by people with relatively little computational
expertise.

So far, ARACNE applications in the literature have been strictly
based on microarray expression profile data. However, high-
throughput technologies for measuring concentrations of other
molecular species, such as microRNA, proteins and their phos-
phorylated isoforms, phospholipids and metabolites, are being
rapidly developed. The methodology described in this protocol
should also be applicable to any data set containing measurements
of interacting species. In fact, the algorithm might produce even
better results when applied to data sets that include more direct
measures of interacting species. Thus this protocol could further
assist scientists in the analysis of a variety of types of new emerging
data. Here, for brevity and coherence, we will discuss only the
application to gene expression profile data.

ARACNE can be run either as a command-line executable
or through a graphical user interface (GUI). Here we describe
the GUI version of ARACNE. Users wishing to employ the

command-line version should consult the online Supplementary
Manual. The command-line version must be used for some
more advanced operations that require access to a computational
cluster.

Algorithm
ARACNE, including its advantages and limitations, is fully
described in ref. 9. Several algorithmic improvements have been
introduced since the original version was launched, such as the use
of bootstrapping to address the issue of a limited sample size,
integration of prior knowledge about genes encoding TFs (Step 8)
and several statistical improvements to the MI estimator (online
Supplementary Technical Report). Overall, these have led to
improvements in the statistical significance of the validated target
enrichment. The original algorithm16 is still available using the ‘fast’
option of the command-line program (online Supplementary
Manual).

Given the scope of this manuscript, we limit ourselves to the
definition of the procedural steps necessary to generate an inter-
action network from microarray expression profile data. For a set of
gene expression measurements that characterize a specific cellular
system across diverse phenotypic conditions, the method described
herein can be used to infer candidate direct regulatory relationships
between gene products, as well as to predict broader functional
relationships. ARACNE generates a putative transcriptional net-
work in two computational steps.

First, gene pairs that exhibit correlated transcriptional responses
are identified by measuring the MI between their mRNA expression
profiles. MI is arguably the best measure of statistical correlation in
a non-linear setting19. Key elements in this step are determination
of the parameters for computation of the MI (i.e., the kernel
width of the estimator), and of the MI threshold for statistical
independence.

In the second step, ARACNE eliminates those statistical depen-
dencies that might be of an indirect nature, such as between two
genes that are separated by intermediate steps in a transcriptional
cascade. Such genes will likely have correlated expression profiles,
resulting in high MI, and might otherwise be selected as candidate
interacting genes. Indirect interactions are eliminated by applying a
well known property of MI called the data processing inequality
(DPI)19. Given a TF, application of the DPI, under appropriate
assumptions9, will thus generate predictions about which other
genes might be its direct transcriptional targets or its upstream
transcriptional regulators.

After this step, some additional filtering and post-processing
procedures might be applied. The final result is a matrix of
candidate interactions, also called an adjacency matrix, which can
be used for further network visualization and analysis, as discussed
in ANTICIPATED RESULTS.

MATERIALS
EQUIPMENT
.ARACNE (http://amdec-bioinfo.cu-genome.org/html/caWorkBench/upload/

aracne.zip): ARACNE source code can be downloaded from http://
amdec-bioinfo.cu-genome.org/html/caWorkBench/upload/aracne_source.zip

.JDK 1.5 (http://java.sun.com/j2se/1.5.0/download.jsp)

.Computer operating systems: Windows, GNU Linux or Mac OS X (version
10.4 or higher, on a PPC architecture)

.Perl (http://www.perl.org), for users wishing to use the provided scripts
described in Boxes 1 and 2

.Matlab 7 or higher (http://www.mathworks.com/products/matlab),
for users wishing to use our methodologies for mapping P values to
MI thresholds and for calculating the optimal kernel width for MI
estimation

.Cygwin (www.cygwin.com), for command line usage under the Windows
operating system
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REAGENT SETUP
ARACNE should be used on data sets containing
a minimum of 100 microarray expression profiles
(or other high-throughput assays). This represents
an empirical lower bound on the amount of data
needed to estimate the MI reliably. Algorithm
accuracy drops rapidly below this threshold. This
requirement is not entirely due to ARACNE’s reli-
ance on MI as a measure of statistical dependence.
In fact, even for simple Pearson correlation-based
methods, one would need approximately the same
number of samples to establish the significance of
the difference between two close correlation values.

It is critical that the cellular systems under
investigation explore a significant range of their
expression dynamics. This can be achieved either
by sampling a variety of naturally occurring
cellular phenotypes, or by systematic experimental
perturbation with chemical or genomic stimuli,
such as a set of pharmacological compounds or
small interfering RNAs. Gene expression profiles
should be generated using the same experimental
protocol, array platform and data pre-processing
method, avoiding variability originating from
manipulation of the samples. If two channel arrays are used, it is critical that
the control RNA is homogeneous across the entire data set.

Microarray data should be formatted as a tab-delimited matrix, with each
column representing a microarray experiment and each row representing a
microarray probe (throughout this text, we use the term probe to mean the
label associated with a variable to be analyzed, e.g., a probe set in Affymetrix
microarrays). Figure 1 demonstrates this data format. The same format can
be used if other experimental data are used instead of expression data. For
instance, the gene expression values might be replaced by the concentration
of specific phospholipids or phosphoproteins as measured by a multicolor
flow-cytometry experiment.

Due to the noisy nature of microarray technology, most researchers will
typically filter probes that are considered ‘uninformative’. For example, genes
with low mean expression cannot be accurately measured by microarray
technology, and probes that do not display a dynamic range of expression
throughout expression profiles cannot be correlated with other probes.
Therefore, although this step is not required, before beginning an ARACNE
analysis, we suggest that uninformative probes be eliminated from the data
set using criteria appropriate for the given microarray technology and data
pre-processing procedure. Alternatively, the ARACNE GUI provides input
boxes to specify thresholds for the mean and the coefficient of variation for
probes to be included in the analysis. Values for these thresholds depend
heavily on the data pre-processing procedure employed, as well as the level of
noise in each microarray. Duplicate probes on a microarray chip might be
used to determine these thresholds.

EQUIPMENT SETUP
ARACNE source files are written in the C++ programming language and
are compiled to run under Windows, GNU Linux and Mac OS X operating
systems. A standard desktop computer is sufficient for analysis of small data
sets or reconstruction of networks surrounding a small subset of probes in
a larger data set (see � TIMING). Advanced ARACNE usage, as described
in Boxes 1 and 2, requires access to a computational cluster, as well as some
minimal cluster programming experience. Users wishing to utilize the scripts
described in these boxes must have Perl installed on their computers. Users
wishing to use our methodologies for mapping P values to MI thresholds
and for calculating the optimal kernel width for MI estimation must have
access to Matlab.

The GUI is implemented in Java and requires JDK 1.5, which should be
downloaded (see EQUIPMENT) by clicking on the link ‘Download JDK 5.0
update 7’ (note that the update number might change if new updates are
released after publication of this protocol). The Java installer should set all
system variables correctly, including the JAVA_HOME variable, which is
required by the program. The version of Java installed on a computer
can be determined by typing ‘java version’ at a command prompt
(see ? TROUBLESHOOTING).

ARACNE should be downloaded (see EQUIPMENT), saved to
an appropriate directory and uncompressed. This will create a directory
called ‘aracne’ containing all files contained in the ARACNE
distribution.

PROCEDURE
Starting the application
1| Launch the application. Navigate to the directory where the ARACNE download has been uncompressed. On Windows
machines, double-click the ‘launch_aracne.bat’ file. On Linux or Mac machines, double-click the ‘launch_aracne.sh’ file.
Alternatively, using a command prompt, navigate to the location where the ARACNE download has been uncompressed and type
‘launch_aracne.bat’ or ‘launch_aracne.sh’ for Windows or Linux/Mac machines, respectively. Figure 2 shows a screenshot of the
GUI after it is launched.

2| Load the input data file. After starting the GUI, the user is presented with an empty framework. Right-click on the
‘Workspace’ icon in the top left of the GUI and click ‘New Project’. Right-click on the newly created ‘New Project’ icon and
click ‘Open file(s)’. Alternatively, from the menu bar at the top of the GUI, click File-Open-File. A file dialog box will
appear. Navigate to the location of the input data (‘.exp’) file and select it. After the data are loaded, the path to the ‘.exp’
file will appear in the ‘Input File’ input box in the ARACNE window. Alternatively, this file can be loaded by clicking the
‘Load’ button located next to the input box. If a dialog box appears that says ‘Choose a chip type’, either click ‘Cancel’
or select the appropriate microarray platform (e.g., HG_U95Av2 for the sample data set) from the dropdown box and
click ‘OK’.

Figure 1 | Input data

format. ARACNE input

is formatted as a

tab-delimited text file

with rows representing

variables (e.g.,

ProbeSets for

Affymetrix microarrays)

and columns representing samples or observations (e.g., a single microarray experiment). No ‘Tab’

character should be contained in any entry. The first and second column in the first row contain arbitrary

text, such as ‘ProbeID’ and ‘Annotation’, and the remaining columns contain a textual representation of

the individual microarray expression profiles or experiments (e.g., ‘Centroblast sample 1’). After this

header row, an arbitrary number of rows can be inserted as long as they start with the string ‘Description’.

These can be used to store additional information about each sample, such as clinical annotations. For

each of the following rows, the first and second column contain a unique identifier (in green) and an

annotation (in orange), respectively. For example, the first column might contain the Affymetrix ProbeSet

ID, while the second contains the HUGO gene symbol or the Entrez Gene ID associated with the probe set.

If multiple variables have the same annotation field (match by string, case sensitive), they will be treated

as duplicates and no MI will be computed between them. If an annotation is not available for a variable,

use the string ‘---’ in the corresponding field. Alternatively, if no annotations are available, the unique

identifiers from the first column can be copied into the second column. No values in the data set may

be left blank.

Col header 1

ProbeID 1
Probe annot 2
Probe annot 1

ProbeID 2

Description

Description

Col header 2 Sample name 1 Sample name 1 ···

···

··· ··· ···
4.5
3.6

···
9.8
0.5

···
5.6
2.8
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Computing MI scores
3| Estimate pairwise MI values. Any ARACNE analysis begins
by identifying the statistical relationships between gene
expression profiles by estimating the pairwise MI, an
information-theoretic measure of relatedness that is zero if
and only if no statistical dependency exists between the
variables. MI calculation can be performed by option (A),
(B) or (C) depending on the scope of the analysis.
(A) To calculate the entire N-by-N matrix of MI scores, where
N is the number of probes in the microarray, press the ‘Run’
button on the GUI with the default parameters. The data are
output as an adjacency matrix (‘.adj’) file, as described in
Figure 3. To specify the output file, click the ‘Set’ button next
to the ‘Output File’ input box. Each input box is activated by
clicking on the checkbox located next to it. If no output file is
specified, one will be created by appending the analysis para-
meter values to the name of the ‘.exp’ file and changing the
extension to ‘.adj’. For large data sets, computing the entire
N-by-N MI matrix is generally infeasible on a single processor
computer (see � TIMING). (B) To study probes correlated
with a specific probe of interest, type the corresponding probe
name into the ‘Hub Gene’ input box to calculate an N-dimen-
sional vector of MI scores between this probe and all other
probes in the data set. (C) To study a subset of the probes,
specify the location of a file containing a list of these probes
by clicking the ‘Load’ button next to the ‘Hub Genes’ input
box. Each line of this file contains one probe identifier, which

corresponds to the name of a probe in the input data file. Using this feature computes MI scores between each probe in the list
and every other probe in the data set (i.e., if the list contains K probes, the program will compute a K-by-N adjacency matrix).

4| Set the MI estimation parameter. The customizable parameter for the MI estimation algorithm used in ARACNE is the kernel
width of the Gaussian estimator, and optimal choices of this parameter will depend on the sample size and statistics of the data
set. If none is specified in the ‘Kernel Width’ input box, default values are automatically generated based on the sample size,
using the method described in the online Supplementary Technical Report. Consult this report and the Matlab script ‘genera-
te_kernel_width_configuration.m’, which is provided with the ARACNE distribution, to use our procedure for inferring optimal
kernel widths. However, we recommend that the automatically computed values be used for most applications, as ARACNE has
been demonstrated to be resilient to suboptimal choices for this parameter9.

5| Set significance thresholds. The ‘p-value’ input box allows the user to specify a ‘p-value’ threshold for an MI score to be
reported in the output file. There are two options for data analysis that can be used at this point. The first option is to calculate
MI values and apply a stringent significance threshold in a single step. However, as MI calculations are computationally inten-
sive, the MI thresholding can also be applied as a post-processing step to a pre-computed adjacency matrix. This option allows
pairwise MIs to be calculated only once, using a low threshold, and for different networks to be rapidly generated by applying
different values for this parameter.
To perform analysis with a single high
significance threshold use option (A) or
to apply significance thresholds to a
pre-computed data set use option (B).
(A) Input the high significance
threshold number (e.g., 1e-7) into the
‘p-value’ input box to report only MI
values that are above the 1e-7 level of
significance (i.e., if the genes were
independent, there is a probability of
1e-7 of obtaining an MI score equal to
or greater than the threshold by
chance). Note that scientific notation

Figure 3 | Adjacency

matrix format. The output

from ARACNE is a tab-

delimited file containing an

adjacency list

representation of all inferred interactions and their MI scores. The file begins with a number of lines

starting with the character ‘4’, each of which contains a parameter value that was used by the algorithm

(e.g., the MI threshold). For the remaining rows, the first column (in green) contains the identifier of the

probe the interactions of which are being reported in the row. The remaining entries in each row consist

of identifier (in orange)–MI value pairs. For example, the row corresponding to the ‘ProbeId1’ can be read

as follows: the MI between ‘ProbeId1’ and ‘ProbeId2’ is 0.08, the MI between ‘ProbeId1’ and ‘ProbeId5’ is

0.15, and so on. Interactions can be stored symmetrically, as the interaction between ‘ProbeId1’ and

‘ProbeId2’ can also be reported in the row corresponding to ‘ProbeId2’. Each row can have a different

number of entries, depending on the number of interactions for the corresponding probe. Probes that have

no ARACNE-inferred interactions will be absent from the output file.

Figure 2 | GUI screenshot with example usage parameters for inferring

targets of probes representing MYC.

ProbeID 1
ProbeID 2

ProbeId 2
ProbeId 1

Parameter name 1 Parameter value 1
···

···

···

···

ProbeId 5
ProbeId 3

······

0.08
0.08

···

···
···
···

0.15
0.22

>
>
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can be used. This P value is converted to an MI threshold internally by the program, using the results from our Monte Carlo
analysis and extrapolation method on the human B-cell data set (described in ref. 9 and online Supplementary Technical
Report). To generate alternative conversion parameters, consult this report and the Matlab script ‘generate_mutual_threshold_
configuration.m’ provided with the ARACNE distribution. To directly input an MI threshold rather than a P value, type this
threshold into the ‘MI threshold’ input box, which is mutually exclusive with the ‘p-value’ input box. The choice of significance
threshold will depend on the desired tradeoff between false-positives and false-negatives. However, as the number of tests
performed is quadratic in the number of genes, we recommend using a stringent threshold to avoid excessive false-positives.
We suggest that a sensible p-value threshold can generally be determined by dividing the desired expected number of
false-positives (generally a small integer) by the number of tests performed, calculated as the number of distinct probe pairs.
For example, a threshold of 1e-7 will lead to about five expected false-positives for a data set with around 10,000 probes,
because 10,000 choose 2 (i.e., about 5e7) probe pairs are tested. (B) Specify the location of the pre-computed adjacency
matrix by clicking the ‘Load’ button next to the ‘Adjacency matrix’ input box, and specify a higher significance threshold in the
‘p-value’ input box. For example, in this scenario, a low significance threshold (e.g., 1e-2) could have been used in Step 5A
and the resulting adjacency matrix used as input here. If this option is specified, MI values will be read from the file rather
than calculated.

6| At this point, the user will have a list of probes that are correlated with each probe of interest in the data set. This is
similar to many statistical algorithms (in particular, ref. 7) that attempt to infer functional relationships between genes based
on similarities in their expression profiles. Thus further analysis can be performed on these results before proceeding to the next
step (e.g., analyze co-expressed genes for enriched gene ontology (GO)20 categories; see ANTICIPATED RESULTS).

Inferring direct statistical interactions
7| Apply the DPI. Many statistical dependencies between gene expression profiles arise from cascades of transcriptional
interactions that correlate the expressions of many genes that do not interact directly. ARACNE provides an option to eliminate
interactions that are likely to be indirect by applying an information-theoretic property known as the DPI (described in
detail in ref. 9). The DPI requires accurate estimation of MI ranks; as MI values cannot be estimated exactly with finite data,
a tolerance is used to compensate for errors in the estimate that might affect these ranks. Empirically, values between 0
(no tolerance) and 0.15 (15%) tolerance should be used, as larger values tend to cause high false-positive rates. To apply the
DPI, type this tolerance value into the ‘DPI Tolerance’ input box. By default, the tolerance is set to 1 (100%), so all edges are
accepted (i.e., the DPI is not used). Similar to the procedure described in Step 5, the DPI can be applied either during
the initial calculation or to a pre-computed adjacency matrix; multiple values for this parameter can be tested using the
latter option.

8| Infer transcriptional only networks. We suggest reconstructing transcriptional networks using only genes that are annotated
as TFs, so that the DPI cannot eliminate TF–target interactions in favor of interactions consisting of two non-TFs. This partially
alleviates the problem associated with highly correlated non-interacting genes, such as those involved in stable complex
formation, which violate some of the assumptions required for application of the DPI. This feature is described in greater detail
in the online Supplementary Manual. The ‘Data’ folder of the program download includes example files named ‘U95A_TFs.txt’
and ‘U133A_TFs.txt’, which contain lists of probes representing TFs in the Affymetrix HG-U95A and HG-U133A microarrays,
respectively. If desired, it might be appropriate to use an expanded list that also includes signaling proteins. This allows
identification of interactions of a signaling molecule that affects gene expression by post-transcriptional modifications of a TF.
To use this feature, click ‘Load’ next to the ‘Transcription Factor List’ input box, and select the file containing the list of TFs.
If this option is used, the DPI will only be applied using edges containing at least one probe specified in the list.

Data post-processing
9| Merge targets of the same genes. Many microarray platforms contain multiple probes representing the same gene. Selecting
the ‘Merge Duplicate Probes’ checkbox for any run of the program will print out a second adjacency matrix by merging together
all probes that represent the same gene, as determined by the second column in the input data (‘.exp’) file. Common choices for
annotations are the Human Genome Organisation (HUGO) gene symbols or Entrez Gene identifiers. The resulting ‘.adj’ file has
the same format as the original ‘.adj’ file, but with labels now representing gene annotations (as specified in the ‘.exp’ file)
rather than probe identifiers. This file will contain a symmetric matrix; thus each edge will be represented twice in the file. This
file has the same name as the original ‘.adj’ file, with ‘.fused.adj’ appended to the end of the file name. If multiple edges are
found representing the same gene pair, the highest MI score is reported.

10| Assign edge directionality. One limitation of ARACNE is the lack of edge directionality (i.e., which gene is the regulator in
an inferred interaction), although we believe this to be a limitation of most statistical methods that do not use time series data
or targeted perturbations. In general, however, we expect that the number of genes regulated by a TF greatly exceeds the
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number of TFs that regulate it. Thus when reconstructing a transcriptional only network, most of the inferred interactions should
be targets of the TF of interest. In cases where a TF has a characterized binding matrix, these predictions can be strengthened
by searching for binding sites in the promoter regions of the predicted targets, using a number of freely available software tools
(e.g., Match21). However, as with any statistical inference algorithm, predictions should be biochemically validated.

� TIMING
ARACNE is an algorithm with polynomial time complexity; however, it can still be computationally intensive for large data sets
(e.g., tens of thousands of genes and hundreds of expression profiles). Here we describe the time usage of ARACNE runs in two
different scenarios.

For reconstruction of the entire network, the most time-consuming step is computing MIs between all probes in the data set.
This step has complexity O(N2M2), where N and M are the numbers of probes and samples, respectively. For example, for a data
set with 1,000 probes and 200 samples, this step took about 2,000 s (33 min) on a personal computer (PC) with a Pentium 4
processor, and this number scales quadratically with the numbers of probes and samples. The application of the DPI has
complexity O(N3). The time taken by this step will depend on the MI threshold. However, in a typical ARACNE analysis, the time
for this step will be negligible compared with the MI calculation step.

Intuitively, reconstructing the network around a single probe is much faster than reconstructing the whole network. In this
scenario, pairwise MIs are first computed between the hub probe and all other probes in the data set, which has complexity
O(NM2). To apply the DPI, MIs must be calculated between all probes that have significant MI with the hub probe, so that the
triangle inequality can be applied to all triplets that might potentially eliminate an edge containing the hub probe. Thus if
K (out of a total of N) probes survive the MI thresholding, this step will have complexity O(K2M2). Unlike the above case, the
time spent by this DPI step might be comparable to, or even longer than, the first step, because new MIs need to be computed
as triplets of probes are being examined. The value of K depends on both the underlying connectivity of the probe under
consideration and the MI threshold.

We provide two general suggestions with respect to the analysis timeline for readers planning to use ARACNE for network
reconstruction. First, if the user is interested in only a subset of probes, we recommend reconstructing only the networks around
these probes. Second, if the entire network needs to be reconstructed (e.g., for study of the topological properties of the full
network or the connectivity beyond first neighbors), we provide scripts (described in Boxes 1 and 2) that can make use of a
computational cluster for parallel processing.

? TROUBLESHOOTING
See Table 1.

TABLE 1 | Troubleshooting table

PROBLEM POSSIBLE REASON SOLUTION

The GUI will not start. The ‘JAVA_HOME’ environmental
variable is not set correctly.

The ‘JAVA_HOME’ environmental variable is necessary for the program to locate the
Java installation. This is usually set automatically by the Java installer. To check
whether this variable has been set, for Windows machines open the DOS prompt
and type ‘echo %JAVA_HOME%’, and for Linux/Mac OS X machines, open a terminal
and type ‘echo $JAVA_HOME’. If this variable is not set or is set incorrectly, it can be
set manually using the following procedures.

For Windows:
(i) Select Start-All Programs-Control Panel.
(ii) Double-click ‘System’. Select the ‘Advanced’ tab and click ‘Environment
variables’.
(iii) In the section ‘User variables fory’, click ‘New’.
(iv) In the ‘Variable name’ section enter ‘JAVA_HOME’.
(v) In the ‘Variable value’ section enter ‘c:\Program Files\Java\jdk1.5.0_07’
(or the location where the JDK is installed).
(vi) Click ‘OK’ in all dialog boxes.

For Linux/Mac OS X:
(i) Open a terminal console.
(ii) Type ‘echo $SHELL’ and press ‘Enter’.
(iii) If you see ‘/bin/tcsh’, then edit the ‘.tcshrc’ file and add ‘setenv JAVA_HOME
opath_to_java4’; here, opath_to_java4 is the absolute path where the JDK is
installed (this path would have been specified when installing the JDK).
(iv) If Step (ii) outputs ‘/bin/bash’ then edit the ‘.bashrc’ and add ‘export
JAVA_HOME¼opath_to_java4’; for ‘/bin/csh’, the resource file to edit would be
‘.cshrc’, and so forth.
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ANTICIPATED RESULTS
ARACNE has been used to study the transcriptional network associated with the MYC proto-oncogene using a data set of
Affymetrix HG-U95A microarrays performed on human B lymphocytes derived from normal, tumor-related and experimentally
manipulated populations22. The file called ‘BCell_matrix.exp’ in the ‘Data’ folder of the ARACNE distribution contains a subset of
254 of these microarrays, excluding the experimentally manipulated cell lines and including a small group of new primary tumor
samples (16 Burkitt lymphomas, eight follicular lymphomas and 12 splenic lymphomas with villous lymphocytes). MYC provides
a convenient test case, because its targets have been intensively studied, it has a characterized DNA binding matrix and known
activity in B cells. The following section describes how ARACNE can be used for this analysis, and should assist users who wish
to adapt this procedure to their own data sets. Boxes 1 and 2 describe more advanced options for users with access to a
computational cluster. If possible, for best results, we recommend using the bootstrapping procedure described in Box 2.
Figure 4 displays a flowchart representation of the different ways in which ARACNE can be used.

Reconstruction of the MYC transcriptional network
Predictions of transcriptional targets for a single probe (or a small list of probes) can be rapidly generated with a single run of
ARACNE. The screenshot in Figure 2 shows example program parameters. Inputting these parameters and pressing ‘Run’ will use
the ‘BCell_matrix.exp’ data set to generate predictions of targets for the three probes representing MYC on the Affymetrix U95A
microarray (as specified in the ‘myc_probes.txt’ file), using a P value of 1e-7 for MI estimation and a DPI tolerance of 10%.

BOX 1 | GENERATION OF A GENOME-WIDE TRANSCRIPTIONAL NETWORK (ADVANCED
USAGE FOR THOSE WITH ACCESS TO A COMPUTATIONAL CLUSTER)

This example and the one in Box 2 describe how a computational cluster can be used to run the more computationally intensive features of
ARACNE. We provide example scripts, located in the ‘Scripts’ directory of the ARACNE distribution, which are designed for the Rocks 3.2
distribution of Linux and the Sun Grid Engine (SGE) job scheduler. Thus these scripts use the ‘qsub’ command to submit jobs to the cluster,
and this command must be modified based on the user’s job-scheduling software. We provide these scripts as a guideline for users who wish
to modify them or to write their own scripts to function on their computational system.
Compute MI vectors for each probe
ARACNE can be used to generate large transcriptional networks, either genome-wide or for a particular subset of probes of interest. While the
GUI might be used to reconstruct larger networks, to avoid excessive computational time we recommend that a computational cluster be
used for the MI estimation step, so that MI vectors for individual probes can be computed in parallel. For users with programming experience,
this is done relatively easily using the command-line version of ARACNE (see online Supplementary Manual) and submitting a job for each
individual probe using the ‘–h’ option. We provide an example Perl script, called ‘splitaracne.pl’, which demonstrates how such a script might
be written and executed. This script takes the same arguments as the ARACNE command-line program, and the ‘–s’ option
is required. This script reads the list of probes given by the ‘–s’ option, and, for each probe, submits a job to the cluster with the same
program parameters, but with the corresponding probe specified with the ‘–h’ option. An example usage of this script is as follows:
‘Scripts/splitaracne.pl -i Data/BCell_matrix.exp -s Data/U95A_TFs.txt -p 1e-2’ assuming the user has navigated to the ARCANE
download directory.

The file ‘U95A_TFs.txt’ contains a list of all known TFs in the Affymetrix U95A microarray. Therefore, each job submitted to the cluster will
compute MI values for a single probe representing a TF and all other probes in the data set, and print out an ‘.adj’ file containing edges with
MI above the specified significance value.
Merge cluster results
The individual files printed in the above step can simply be concatenated, with the header lines removed, to form the complete ‘.adj’ file.
An example Perl script, called ‘concatadj.pl’, to perform this concatenation is also provided. This script takes a single argument, which is the
directory path containing the ‘.adj’ files to be concatenated.
Threshold MI scores
The previous step used an MI P value of 0.01 to create the adjacency matrix. Once the full matrix is created by merging the individual cluster
results, it can be further filtered using either the GUI, as described in ANTICIPATED RESULTS, or an ARACNE command-line option such as the
following: ‘aracne –i Data/BCell_matrix.exp –j ClusterResults/MI_matrix_p_1e-2.adj –o ClusterResults/MI_matrix_p_1e-7.adj –p 1e-7’.
Here,‘MI_matrix_p_1e-2.adj’ is the name of the file resulting from the concatenation of the cluster results, and ‘ClusterResults’ is the name of
the directory containing this file. The output file, ‘MI_matrix_p_1e-7.adj’, will contain only MI scores above the 1e-7 level of significance.
Alternatively, the more stringent P value could have been specified during the cluster submission step.
Apply the DPI
Once the complete MI matrix has been formed, the DPI can be applied using either the GUI, as described in ANTICIPATED RESULTS, or an ARACNE
command-line option such as the following: ‘aracne –i Data/BCell_matrix.exp –j ClusterResults/MI_matrix_p_1e-7.adj –o ClusterResults/
FilteredMatrix.adj –l Data/U95A_TFs.txt –e 0.10’. This command would produce a new ‘.adj’ file, called ‘FilteredMatrix.adj’, by applying the DPI with
10% tolerance. To construct a transcriptional only network, we recommend using the ‘–1’ option, followed by a list of all probes on the microarray
representing TFs and/or signaling proteins. This option can also be used with a subset of TFs (e.g., those known to be active in a particular tissue
type or cellular process). Subsequent analysis on the network can then be performed as described in ANTICIPATED RESULTS.
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The DPI will only be applied to edges containing a probe representing a TF (as specified in the ‘U95A_TFs.txt’ file) and the
results will be output to a file named ‘MYC_targets.adj’. Because the ‘Merge duplicate probes’ checkbox is selected, the program
will also output a file named ‘MYC_targets.adj.fused.adj’ that provides a gene-level representation of the network by merging

probes that represent the same gene. The program uses the
gene annotations provided in the second column of the ‘.exp’
file to merge probes. Users wishing to obtain a fast result by
following the canonical ARACNE pipeline can simply run this
procedure and progreed to the analysis described in the
section titled ‘Analyze putative targets’. Below, we describe a
step-by-step approach, which allows users to test multiple
program parameters as well as to analyze the intermediate
output produced before application of the DPI.

Generate MI matrix
The initial step is to compute MI values between all probes
representing MYC and all other probes in the data set. The
parameters will be similar to those in Figure 2. However, in
this scenario, the DPI will not be applied, so the ‘DPI
Tolerance’ input box will be left blank. Because MI calculations
are computationally intensive, it is often useful to calculate
the adjacency matrix initially using a low threshold, so that
different significance thresholds can be tested rapidly in
subsequent steps. For example, a value of 1e-2 might be used
in the ‘p-value’ input box (scientific or numerical notation can
be used). The MI threshold corresponding to this P value is
automatically determined as described in the online
Supplementary Technical Report. The name of the output file
should also be changed, for example to ‘MYC_MIs_1e-2.adj’.
The program completes in B5 min (all time estimates are for
a Pentium 4, 3 GHz processor). The green-colored box, located

BOX 2 | GENERATION OF A CONSENSUS BOOTSTRAPPING NETWORK

The recommended usage of ARACNE is to employ bootstrapping to generate a consensus network. ARACNE uses bootstrapping, a method for
assessing statistical confidence, to build networks that are more robust to errors in the data, and in the estimation of MIs, than regular ARACNE
reconstructions. Briefly, experiments (arrays) are randomly sampled from the original data set with replacement and assembled into new
‘bootstrapped’ data sets containing the same number of experiments as the original. ARACNE is then applied to a large number of such pseudo-data
sets to generate a set of bootstrap networks. A consensus network is then constructed that includes edges (i.e., interactions) that are supported
across many of the bootstrap networks. We devised a permutation test to determine the inclusion of an edge in the consensus network as follows.
We start with edges that are inferred in at least one of the bootstrap networks. For each bootstrap network, we randomly shuffle the positions of its
edges while preserving the total number. The distribution of the supports of each edge across such shuffled networks can then serve as a null
distribution, against which we can assess the statistical significance of an observed edge support. If the P value from this test is smaller than a
predefined threshold, the edge will be preserved in the consensus network. Because of its computationally intensive nature, the bootstrapping
procedure is only implemented in the command-line version of ARACNE, facilitating submission of jobs to a computational cluster. Two sample Perl
scripts have been provided along with the ARACNE program to demonstrate the generation of a consensus bootstrapping network.
Generate bootstrap networks
The first script, ‘qsubbootstrap.pl’, is used for the submission of bootstrap jobs to computational clusters. The first argument to this script
is the name of the output directory, and the second and third arguments specify the range that is used to number the resulting files.
The remaining arguments are the same as for a regular ARACNE command-line program. For example, the command ‘perl Scripts/
qsubbootstrap.pl BootstrapNetworks 1 100 -i Data/BCell_matrix.exp -s Data/U95A_TFs.txt -l Data/U95A_TFs.txt -p 1e-6 –e 0.1’ will submit
100 jobs (numbered 1–100) to the cluster nodes and save all of the output bootstrap networks in the directory ‘BootstrapNetworks’.
Generate consensus network
Upon completion of the jobs, executing the second script, ‘getconsensusnet.pl’, will combine all the adjacency matrices and randomly
permute the inferred edges in each bootstrap network to perform significance tests. It will then construct the consensus network based on
the user-specified P-value threshold. This script takes as arguments the directory containing the bootstrap networks and the significance
threshold. For example, ‘perl Scripts/getconsensusnet.pl BoostrapNetworks 1e-7’ will construct a consensus network from all bootstrap
networks contained in the ‘BootstrapNetworks’ directory using significance threshold ‘1e-7’. Subsequent analysis of the consensus network
can be performed as described in ANTICIPATED RESULTS.

Download
program

Single gene Gene list All genes

Compute MI: Single run or bootstrapping

DNA binding
site enrichment

analysis

Adjacency
matrix

Gene ontology
enrichment

analysis

Visualization

Merge same-
gene probes

Filtered
adjacency

matrix

Experimental
validation

Select significant
MI measurements

Apply DPI

Format and
normalize
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Remove non
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Expression
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(.exp file)

Figure 4 | ARACNE flowchart.
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next to the ‘Run’ button, will flash green and red until the
program completes, at which point it will remain green.
Alternatively, as described above (Step 5A), a more stringent
threshold can be specified during this step.

Filter genes for statistical significance
The next step is to filter genes using a more stringent
significance threshold for MI values. In this step, the
adjacency matrix generated in the previous step will be used
as an input to the program. Thus this file should be selected
by pressing the ‘Load’ button located next to the ‘Adjacency
Matrix’ input box and navigating to the location of the file.
Note that an adjacency matrix used as input for further
processing should always contain probe-level data (i.e., it
should not contain the suffix ‘.fusedprobe.adj’). The other
parameters are the same as in the previous step, except a
lower P value (e.g., 1e-7) is used. A different name for the
output file should also be specified (e.g., ‘MYC_MIs_1e-7.adj’).
It is often useful to test a range of thresholds in order to
generate a performance curve for the algorithm. This can be
done by running this procedure multiple times, although
users might want to use the command-line version of ARACNE instead (see online Supplementary Manual), and employ a
scripting language to automatically test a large range of parameters. If the DPI is not used, the algorithm is much more
sensitive to the choice of the significance threshold, because the DPI usually removes many edges with low MI scores.
If further analysis is to be performed on these results, it is often useful to select the ‘Merge duplicate probes’ check box to
print out an ‘.adj’ file in which all probes representing the same gene are merged into single entries. This step completes in
several seconds.

Analyze correlated genes
Many traditional microarray analysis algorithms seek to identify gene expression profiles that are statistically correlated within a
gene expression profile data set. By analyzing the results produced at this point, ARACNE can be used similarly to these
traditional algorithms, while taking advantage of its sophisticated statistical methods, particularly its MI calculation machinery.

One common type of analysis is studying correlated genes to determine whether any GO categories are enriched at a statisti-
cally significant level. This can be performed using the ARACNE software, as described in the online Supplementary Tutorial.

Identify direct transcriptional interaction candidates
The MI network produced at this point can be processed using the DPI to predict direct transcriptional interactions. The
parameters will be similar to those shown in Figure 2, except that the (probe level) ‘.adj’ file produced above should be selected
in the ‘Adjacency Matrix’ input box. In order to apply the DPI, for each MYC probe, MIs must be calculated between all probes
that are significantly correlated with it. Thus this step will be time consuming, as MYC is correlated with many other genes. This
step completes in B16 min. Again, to analyze the entire performance space of the algorithm, it is often useful to test a range
of parameters for the DPI. The ‘filterNetworks.pl’ script in the ‘Scripts’ directory of the distribution provides an example of how
a cluster can be used to perform this type of analysis.

Analyze putative targets
The resulting putative MYC targets can be analyzed using several methods. Here we describe three commonly used techniques
that we recommend in this protocol. First, if the hub TF has a characterized binding matrix in a database such as Transfac23 or
Jaspar24, testing for enrichment of this binding site in the promoter regions of the putative targets can give an indication of
the quality of the predicted targets. Many free software applications exist for searching for binding sites in promoter regions
(e.g., ref. 21). Second, it is often useful to obtain a visual representation of the network. Figure 5 shows such a visualization
of the MYC network, and the online Supplementary Tutorial describes how this figure can be generated using the ARACNE
software, which incorporates the Cytoscape software package25. Third, searching for GO categories that are enriched among the
putative targets of a TF can be useful for characterizing the function of the TF in the cellular context of a particular microarray
set or for inferring new functions of uncharacterized TFs. We suggest that this analysis can be a useful starting point for
researchers interested in studying the function of an uncharacterized TF. This analysis is implemented within the ARACNE
software and is described in the online Supplementary Tutorial.

Figure 5 | Cytoscape rendering of the MYC network.
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Note: Supplementary information is available via the HTML version of this article.
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