Physics 380, 2011: Homework 4
Back to the main Teaching page.
Back to Physics 380, 2011: Information Processing in Biology.
Please turn on the assignment either as a PDF file to me by email, or as a printout/writeup to my mailbox in physics. Detailed derivations (with explanations) and calculations must be present for the problems for full credit.
- Let's suppose a particle starts at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} and diffuses with a diffusion coefficient D and no drift. Calculate the distribution of particle locations at time Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} .
- How does the above distribution change if there is drift v?