Physics 434, 2012: Homework 7

From Ilya Nemenman: Theoretical Biophysics @ Emory
Revision as of 18:30, 1 November 2012 by nemenman>Ilya
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Emory Logo

Back to the main Teaching page.

Back to Physics 434, 2012: Information Processing in Biology.

GIven that we have less time for this homework, let's just do math, but not coding.

  1. Consider the following biochemical signaling circuit, which is supposed to represent the Mitogen-activated protein (MAP) kinase pathway, which is one of the most universal signaling pathways in eukaryotes. A protein can be phosphorylated by a kinase, present in a concentration Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_1} . The kinase then must dissociate from the protein. It can then rebind it again and phosphorylate it on the second site. The total protein concentration is and unposphorylated, singly, and doubly poshporylated forms will be denoted as respectively, so that . At the same time, a phosphotase with concentration is dephosphorylating the protein on both sites. See the adjacent figure for the cartoon of this signaling system.
    MAPK signaling cartoon
    However, for this problem we assume that production of both and just started, their concentrations are near zero, and so there is nothing yet to dephosphorylate.
    • Write a set of differential equations that describes the rate of production of and .
    • Sketch the rate of production of at this initial moment as a function of .
  2. We have discussed in class that functions can be represented by their Fourier transforms . Transformation from a function to its transform and back is as easy as taking one integral. For functions that are periodic, so that for any Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} , the result is even simpler, and the functions can be represented often by their Fourier series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)=\frac{a_0}{2} + \sum_{n=1}^\infty \, [a_n \cos(nt) + b_n \sin(nt)]} , where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = \frac{1}{\pi}\int_{-\pi}^\pi x(t) \cos(nt)\, dt, \quad n \ge 0} , and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n = \frac{1}{\pi}\int_{-\pi}^\pi x(t) \sin(nt)\, dt, \quad n \ge 1} are called the Fourier coefficients of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . Let's explore how good such representations are. Let's study the partial sums of the Fourier series for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , denoted by . Calculate (analytically) the Fourier coefficients for the following three functions defined for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\pi\le t\le \pi} . (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)=\left\{\begin{array}{ll}-1,&t<0\\0,&t=0\\+1,&t>0\end{array} \right.} ; (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)=\left\{\begin{array}{ll}t/\pi+1,&t<0\\1,&t=0\\1-t/\pi,&t>0\end{array} \right.} ; (c)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)=(t/\pi-1)^2(t/\pi+1)^2} . Plot some the first ten partial sums of the Fourier series for all of these functions to observe how the sums converge. Use one figure per function (that is, plot the sums on the same figure). Note that the Fourier coefficients decrease the slowest for the function that is discontinuous, (a), and the fastest for the function that is smooth, (c).
  3. A common signaling element in cells is the so called Incoherent Feedforward Loop: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} is a signal, which activates the response Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} and the intermediate memory node Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} . The intermediate node then suppressed the output: . Repeat the procedures we've done in class to calculate the frequency dependent gain Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_\omega} for this system. Plot the curve for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{mm}\ll k_{rr}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{mm}\gg k_{rr}} . Explain the differences. Graduate students: Incorporate Langevin noise into the system and calculate the SNR for it.