Bandaru et al., 2011

From Ilya Nemenman: Theoretical Biophysics @ Emory
Jump to: navigation, search

Back to the full Publications list.

P Bandaru, M Bansal, and I Nemenman. Mass conservation and Inference of metabolic networks from high-throughput mass spectrometry data. J Comp Bio 18, 147, 2011. PDF, arXiv.

  • Appeared in RECOMB Systems Biology Satellite, 2010.
We present a step towards the metabolome-wide computational inference of cellular metabolic reaction networks from metabolic profiling data, such as mass spectrometry. The reconstruction is based on identification of irreducible statistical interactions among the metabolite activities using the ARACNE reverse-engineering algorithm and on constraining possible metabolic transformations to satisfy the conservation of mass. The resulting algorithms are validated on synthetic data from an abridged computational model of Escherichia coli metabolism. Precision rates upwards of 50% are routinely observed for identification of full metabolic reactions, and recalls upwards of 20% are also seen.