Uncategorized pages

Jump to: navigation, search

Showing below up to 354 results in range #21 to #374.

View (previous 500 | next 500) (20 | 50 | 100 | 250 | 500)

  1. Diagnostics using microarray data
  2. Dresigmeyer et al., 2008
  3. E. coli chemoreceptor: mesoscopic model
  4. Edwards et al., 2007
  5. Ellison et al., 2016
  6. Entropy Estimation
  7. Entropy estimation methods
  8. Establishing causality
  9. First q-bio Conference: Employment board
  10. First q-bio Conference: Participants
  11. First q-bio Conference: Program
  12. First q-bio Conference: Program Details
  13. First q-bio Summer School: Classrooms
  14. First q-bio Summer School: Gene Regulation
  15. First q-bio Summer School: Other Topics in Biological Modeling
  16. First q-bio Summer School: Participants
  17. First q-bio Summer School: Program
  18. First q-bio Summer School: School Hotel
  19. First q-bio Summer School: Signal Transduction Mechanisms
  20. First q-bio Summer School: Stochasticity in Biochemistry and Systems Biology
  21. Gintautas et al., 2011
  22. Group Picture 2012
  23. Group Picture 2013
  24. Group Picture 2014
  25. Group seminar / Journal club
  26. Hlavacek et al., 2015
  27. Holmes et al., 2017
  28. Holy and Nemenman, 2002
  29. Information Bottleneck Method
  30. Information processing in biological systems
  31. Installing Octave on your PC and Mac
  32. Issues
  33. Kominis and Nemenman, 1997
  34. Learning, adaptation, and adaptive behaviors
  35. Leung et al., 2016
  36. Levchenko and Nemenman, 2014
  37. Margolin et al., 2004b
  38. Margolin et al., 2006a
  39. Margolin et al., 2006b
  40. Margolin et al., 2010
  41. Merchan and Nemenman, 2015
  42. Michaelis-Menten reaction: pump current and other stochastic effects
  43. Minkevich and Nemenman, 1995a
  44. Minkevich and Nemenman, 1995b
  45. Mugler et al., 2008
  46. Mugler et al., 2009
  47. Mugler et al., 2015
  48. Munsky et al., 2009
  49. Naud et al., 1999
  50. Nemenman, 2004
  51. Nemenman, 2005
  52. Nemenman, 2011b
  53. Nemenman, 2012
  54. Nemenman, 2012a
  55. Nemenman, 2015
  56. Nemenman-filtering
  57. Nemenman and Bialek, 2002
  58. Nemenman and Silbergleit, 1999
  59. Nemenman and Singh, 2015
  60. Nemenman and Wiggins
  61. Nemenman et al.
  62. Nemenman et al., 2002
  63. Nemenman et al., 2004
  64. Nemenman et al., 2007a
  65. Nemenman et al., 2008
  66. Nemenman et al., 2008a
  67. Nemenman et al., 2009
  68. Nemenman et al., 2010
  69. Nemenman et al., 2011
  70. Nemenman et al., 2012
  71. Nemenman et al., 2013
  72. Nemenman et al., 2014
  73. Nemenman et al., 2015
  74. News
  75. Otwinowski and Nemenman, 2013
  76. Otwinowski et al., 2011
  77. P53 regulation
  78. Personal Pages
  79. Ph. D. Thesis
  80. Physics 190, 2015: Discussion Leaders
  81. Physics 190, 2015: Syllabus
  82. Physics 212, 2016: Computational Modeling For Scientists And Engineers
  83. Physics 212, 2016: Syllabus
  84. Physics 212, 2017: Computational Modeling For Scientists And Engineers
  85. Physics 212, 2017: Lab 10
  86. Physics 212, 2017: Lab 12
  87. Physics 212, 2017: Lab 4
  88. Physics 212, 2017: Lab 5: Starting with Project 2
  89. Physics 212, 2017: Lab 7
  90. Physics 212, 2017: Lecture 10
  91. Physics 212, 2017: Lecture 11: Good coding practices
  92. Physics 212, 2017: Lecture 12: More Python: Scopes and all that
  93. Physics 212, 2017: Lecture 13
  94. Physics 212, 2017: Lecture 14
  95. Physics 212, 2017: Lecture 15
  96. Physics 212, 2017: Lecture 18: Introduction to randomness. How are pseudo-random numbers generated?
  97. Physics 212, 2017: Lecture 1 - Introduction
  98. Physics 212, 2017: Lecture 2
  99. Physics 212, 2017: Lecture 23
  100. Physics 212, 2017: Lecture 24
  101. Physics 212, 2017: Lecture 25
  102. Physics 212, 2017: Lecture 3 - The Modeling Process
  103. Physics 212, 2017: Lecture 7
  104. Physics 212, 2017: Lecture 8
  105. Physics 212, 2017: Lecture 9: Errors
  106. Physics 212, 2017: Lectures 5, 6
  107. Physics 212, 2017: Syllabus
  108. Physics 212, 2018: Computational Modeling For Scientists And Engineers
  109. Physics 212, 2018: Lab 11
  110. Physics 212, 2018: Lab 12
  111. Physics 212, 2018: Lecture 1
  112. Physics 212, 2018: Lecture 10
  113. Physics 212, 2018: Lecture 11
  114. Physics 212, 2018: Lecture 12
  115. Physics 212, 2018: Lecture 13
  116. Physics 212, 2018: Lecture 14
  117. Physics 212, 2018: Lecture 15
  118. Physics 212, 2018: Lecture 17
  119. Physics 212, 2018: Lecture 18
  120. Physics 212, 2018: Lecture 19
  121. Physics 212, 2018: Lecture 2
  122. Physics 212, 2018: Lecture 21
  123. Physics 212, 2018: Lecture 22
  124. Physics 212, 2018: Lecture 25
  125. Physics 212, 2018: Lectures 4
  126. Physics 212, 2018: Lectures 6
  127. Physics 212, 2018: Lectures 7
  128. Physics 212, 2018: Lectures 8
  129. Physics 212, 2018: Syllabus
  130. Physics 380, 2010: Basic Probability Theory
  131. Physics 380, 2010: Coding Theorems
  132. Physics 380, 2010: Fourier Analysis
  133. Physics 380, 2010: Information, Gambling, and Population Biology
  134. Physics 380, 2010: Information Processing in Biology
  135. Physics 380, 2010: Information Theory
  136. Physics 380, 2010: Introduction
  137. Physics 380, 2010: Linear Response Theory
  138. Physics 380, 2010: Random Walks
  139. Physics 380, 2011: Block four: Adaptation
  140. Physics 380, 2011: Block one: Biological information processing is probabilistic
  141. Physics 380, 2011: Block three: Dynamical Information Processing
  142. Physics 380, 2011: Block two: Information theory in biological signaling
  143. Physics 380, 2011: Homework 1
  144. Physics 380, 2011: Homework 10
  145. Physics 380, 2011: Homework 2
  146. Physics 380, 2011: Homework 3
  147. Physics 380, 2011: Homework 4
  148. Physics 380, 2011: Homework 5
  149. Physics 380, 2011: Homework 6
  150. Physics 380, 2011: Homework 7
  151. Physics 380, 2011: Homework 8
  152. Physics 380, 2011: Homework 9
  153. Physics 380, 2011: Information Processing in Biology
  154. Physics 380, 2011: Lecture 1
  155. Physics 380, 2011: Lecture 10
  156. Physics 380, 2011: Lecture 11
  157. Physics 380, 2011: Lecture 12
  158. Physics 380, 2011: Lecture 13
  159. Physics 380, 2011: Lecture 14
  160. Physics 380, 2011: Lecture 15
  161. Physics 380, 2011: Lecture 16
  162. Physics 380, 2011: Lecture 17
  163. Physics 380, 2011: Lecture 18
  164. Physics 380, 2011: Lecture 19
  165. Physics 380, 2011: Lecture 2
  166. Physics 380, 2011: Lecture 21
  167. Physics 380, 2011: Lecture 22
  168. Physics 380, 2011: Lecture 23
  169. Physics 380, 2011: Lecture 24
  170. Physics 380, 2011: Lecture 25
  171. Physics 380, 2011: Lecture 26
  172. Physics 380, 2011: Lecture 27
  173. Physics 380, 2011: Lecture 3
  174. Physics 380, 2011: Lecture 4
  175. Physics 380, 2011: Lecture 5
  176. Physics 380, 2011: Lecture 6
  177. Physics 380, 2011: Lecture 7
  178. Physics 380, 2011: Lecture 8
  179. Physics 380, 2011: Lecture 9
  180. Physics 380, 2012: Homework 11
  181. Physics 380, 2012: Homework 12
  182. Physics 434, 2012: Block one: Biological information processing is probabilistic
  183. Physics 434, 2012: Block three: Dynamical Information Processing
  184. Physics 434, 2012: Block two: Information theory in biological signaling
  185. Physics 434, 2012: Homework 1
  186. Physics 434, 2012: Homework 10
  187. Physics 434, 2012: Homework 2
  188. Physics 434, 2012: Homework 3
  189. Physics 434, 2012: Homework 4
  190. Physics 434, 2012: Homework 5
  191. Physics 434, 2012: Homework 6
  192. Physics 434, 2012: Homework 7
  193. Physics 434, 2012: Homework 8
  194. Physics 434, 2012: Homework 9
  195. Physics 434, 2012: Information Processing in Biology
  196. Physics 434, 2012: Lecture 1
  197. Physics 434, 2012: Lecture 10
  198. Physics 434, 2012: Lecture 14
  199. Physics 434, 2012: Lecture 15
  200. Physics 434, 2012: Lecture 16
  201. Physics 434, 2012: Lecture 17
  202. Physics 434, 2012: Lecture 20
  203. Physics 434, 2012: Lecture 4
  204. Physics 434, 2012: Lecture 5
  205. Physics 434, 2012: Lecture 6
  206. Physics 434, 2012: Lecture 7
  207. Physics 434, 2012: Lectures 10-11
  208. Physics 434, 2012: Lectures 12-13
  209. Physics 434, 2012: Lectures 2-3
  210. Physics 434, 2012: Lectures 8, 9
  211. Physics 434, 2012: Syllabus
  212. Physics 434, 2014: Block one: Biological information processing is probabilistic
  213. Physics 434, 2014: Central limit theorem
  214. Physics 434, 2014: Homework 1
  215. Physics 434, 2014: Homework 2
  216. Physics 434, 2014: Homework 3
  217. Physics 434, 2014: Homework 4
  218. Physics 434, 2014: Homework 5
  219. Physics 434, 2014: Homework 6
  220. Physics 434, 2014: Homework 7
  221. Physics 434, 2014: Homework 8
  222. Physics 434, 2014: Information Processing in Biology
  223. Physics 434, 2014: Introduction
  224. Physics 434, 2014: Luria-Delbruck experiment
  225. Physics 434, 2014: Project 1 -- Multistability and a molecular clock
  226. Physics 434, 2014: Project 2 -- Who controls whom?
  227. Physics 434, 2014: Project 3 -- Noise propagation
  228. Physics 434, 2014: Project 4 -- Luria and Delbruck, take 2
  229. Physics 434, 2014: Projects
  230. Physics 434, 2014: Random walks and diffusion
  231. Physics 434, 2014: Scripts
  232. Physics 434, 2014: Search and first passage times
  233. Physics 434, 2014: Stochastic chemical kinetics
  234. Physics 434, 2014: Syllabus
  235. Physics 434, 2015: Homework 1
  236. Physics 434, 2015: Homework 10
  237. Physics 434, 2015: Homework 2
  238. Physics 434, 2015: Homework 3
  239. Physics 434, 2015: Homework 4
  240. Physics 434, 2015: Homework 5
  241. Physics 434, 2015: Homework 6
  242. Physics 434, 2015: Homework 7
  243. Physics 434, 2015: Homework 8
  244. Physics 434, 2015: Homework 9
  245. Physics 434, 2015: Introduction to Information theory
  246. Physics 434, 2015: Physical Biology
  247. Physics 434, 2015: Project 1, Luria-Delbruck, Revisited
  248. Physics 434, 2015: Project 2 -- Multistability in gene expression
  249. Physics 434, 2015: Project 3 -- Who controls whom?
  250. Physics 434, 2015: Project 4 -- Noise Propagation
  251. Physics 434, 2015: Project 5
  252. Physics 434, 2015: Syllabus
  253. Physics 434, 2016: Discrete randomness
  254. Physics 434, 2016: Homework 1
  255. Physics 434, 2016: Homework 2
  256. Physics 434, 2016: Homework 3
  257. Physics 434, 2016: Homework 4
  258. Physics 434, 2016: Homework 5
  259. Physics 434, 2016: Homework 6
  260. Physics 434, 2016: Homework 7
  261. Physics 434, 2016: Homework 8
  262. Physics 434, 2016: Homework 9
  263. Physics 434, 2016: Law of large numbers
  264. Physics 434, 2016: Physical Biology
  265. Physics 434, 2016: Project 1
  266. Physics 434, 2016: Project 2
  267. Physics 434, 2016: Syllabus
  268. Physics 511A, 2011: Chapter 1, Volume 2. The principle of relativity
  269. Physics 511A, 2012: Chapter 1, Volume 8. Electrostatics of conductors
  270. Physics 511A, 2012: Chapter 2, Volume 2. Relativistic mechanics
  271. Physics 511A, 2012: Chapter 2, Volume 8. Electrostatics of dielectric
  272. Physics 511A, 2012: Chapter 3, Volume 2. Charges in electromagnetic field
  273. Physics 511A, 2012: Chapter 3, Volume 8. Steady current
  274. Physics 511A, 2012: Chapter 4, Volume 2. Electromagnetic field equations
  275. Physics 511A, 2012: Chapter 4, Volume 8. Static magnetic field
  276. Physics 511A, 2012: Chapter 5, Volume 2. Constant electromagnetic fields
  277. Physics 511A, 2012: Chapter 6, Volume 2. Electromagnetic waves
  278. Physics 511A, 2012: Chapter 7, Volume 2. Propagation of light
  279. Physics 511A, 2012: Chapter 8, Volume 2. The field of moving charges
  280. Physics 511A, 2012: Chapter 9, Volume 2. Radiation of electromagnetic waves
  281. Physics 511A, 2012: Graduate Electrodynamics
  282. Physics 511A, 2012: Waves in media
  283. Physics 511A, 2013: Chapter 1, Volume 2. The principle of relativity
  284. Physics 511A, 2013: Chapter 1, Volume 8. Electrostatics of conductors
  285. Physics 511A, 2013: Chapter 2, Volume 2. Relativistic mechanics
  286. Physics 511A, 2013: Chapter 2, Volume 8. Electrostatics of dielectric
  287. Physics 511A, 2013: Chapter 3, Volume 2. Charges in electromagnetic field
  288. Physics 511A, 2013: Chapter 3, Volume 8. Steady current
  289. Physics 511A, 2013: Chapter 4, Volume 2. Electromagnetic field equations
  290. Physics 511A, 2013: Chapter 4, Volume 8. Static magnetic field
  291. Physics 511A, 2013: Chapter 5, Volume 2. Constant electromagnetic fields
  292. Physics 511A, 2013: Chapter 6, Volume 2. Electromagnetic waves
  293. Physics 511A, 2013: Chapter 7, Volume 2. Propagation of light
  294. Physics 511A, 2013: Chapter 8, Volume 2. The field of moving charges
  295. Physics 511A, 2013: Chapter 9, Volume 2. Radiation of electromagnetic waves
  296. Physics 511A, 2013: Graduate Electrodynamics
  297. Physics 511A, 2013: Waves in media
  298. Physics 511A, 2014: Chapter 1, Volume 2. The principle of relativity
  299. Physics 511A, 2014: Chapter 1, Volume 8. Electrostatics of conductors
  300. Physics 511A, 2014: Chapter 2, Volume 2. Relativistic mechanics
  301. Physics 511A, 2014: Chapter 2, Volume 8. Electrostatics of dielectric
  302. Physics 511A, 2014: Chapter 3, Volume 2. Charges in electromagnetic field
  303. Physics 511A, 2014: Chapter 3, Volume 8. Steady current
  304. Physics 511A, 2014: Chapter 4, Volume 2. Electromagnetic field equations
  305. Physics 511A, 2014: Chapter 4, Volume 8. Static magnetic field
  306. Physics 511A, 2014: Chapter 5, Volume 2. Constant electromagnetic fields
  307. Physics 511A, 2014: Chapter 5, Volume 8. Ferromagnetism and antiferromagnetism
  308. Physics 511A, 2014: Chapter 6, Volume 2. Electromagnetic waves
  309. Physics 511A, 2014: Chapter 7, Volume 2. Propagation of light
  310. Physics 511A, 2014: Chapter 8, Volume 2. The field of moving charges
  311. Physics 511A, 2014: Chapter 9, Volume 2. Radiation of electromagnetic waves
  312. Physics 511A, 2014: Graduate Electrodynamics
  313. Physics 511A, 2014: Superconductivity
  314. Physics 511A, 2014: Waves in media
  315. Presentations
  316. Professional
  317. Projects
  318. Publications about our research
  319. RBC Metabolic Network
  320. Relational networks
  321. Research Interests
  322. Reverse-engineering algorithms benchmarks
  323. Reverse engineering cellular networks
  324. Rise of the 140 character paper
  325. Schwab et al., 2014
  326. Silbergleit et al., 2003a
  327. Silbergleit et al., 2003b
  328. Simpler methods for High Throughput Data analysis
  329. Singh et al., 2014
  330. Sinitsyn and Nemenman, 2007
  331. Sinitsyn and Nemenman, 2007a
  332. Sinitsyn and Nemenman, 2010
  333. Sinitsyn et al., 2009
  334. Smart Thoughts From Smart People
  335. Smith et al., 2016
  336. Srivastava et al., 2017
  337. Stochastic dynamics on biological networks
  338. Stochastic path integral
  339. Stochasticity in regulatory networks
  340. Stromberg et al., 2013
  341. Tanase-Nicola and Nemenman, 2011
  342. Tang et al., 2014
  343. Tchernookov and Nemenman, 2013
  344. Teuscher et al, 2008
  345. The Berry phase in stochastic kinetics
  346. Tools and approximations for stochastic analysis
  347. Visual neural computation
  348. Wang et al., 2005
  349. Wang et al., 2006
  350. Wang et al., 2007
  351. Wang et al., 2009
  352. Wei et al., 2011
  353. Wiggins and Nemenman, 2003
  354. Ziv et al., 2007

View (previous 500 | next 500) (20 | 50 | 100 | 250 | 500)